Is it possible to get the min and max values from two series in a groupby?
For example in the following situation, when grouping by c, how can I get the min and max values for a and b at the same time?
df = pd.DataFrame({'a': [10,20,3,40,55], 'b': [5,14,8,50,60], 'c': ['x','x','y','y','y']})
g = df.groupby(df.c)
for key, item in g:
print (g.get_group(key), "\n")
a b c
0 10 5 x
1 20 14 x
a b c
2 3 8 y
3 40 50 y
4 55 60 y
I have resolved this by taking the min and max of each grouped series then by finding the min and max of the _min/_max series:
df['a_min'] = g['a'].transform('min')
df['a_max'] = g['a'].transform('max')
df['b_min'] = g['b'].transform('min')
df['b_max'] = g['b'].transform('max')
df['min'] = df[['a_min', 'a_max', 'b_min', 'b_max']].min(axis=1)
df['max'] = df[['a_min', 'a_max', 'b_min', 'b_max']].max(axis=1)
a b c a_min a_max b_min b_max min max
0 10 5 x 10 20 5 14 5 20
1 20 14 x 10 20 5 14 5 20
2 3 8 y 3 55 8 60 3 60
3 40 50 y 3 55 8 60 3 60
4 55 60 y 3 55 8 60 3 60
This produces the output that I want but with a lot of extra series. I am wondering if there is a better way to do this?
Use:
df = df.join(df.melt('c').groupby('c')['value'].agg(['min','max']), 'c')
print (df)
a b c min max
0 10 5 x 5 20
1 20 14 x 5 20
2 3 8 y 3 60
3 40 50 y 3 60
4 55 60 y 3 60
Details:
Need one column with a and b values by melt:
print (df.melt('c'))
c variable value
0 x a 10
1 x a 20
2 y a 3
3 y a 40
4 y a 55
5 x b 5
6 x b 14
7 y b 8
8 y b 50
9 y b 60
Then aggregate min and max by groupby and agg:
print(df.melt('c').groupby('c')['value'].agg(['min','max']))
min max
c
x 5 20
y 3 60
and last join to original.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With