I wanted to plot a user-defined Piecewise function (pagoda function) in Mathematica 10.2. It seems straightforward to me unfortunately the easy command leads to a bad result.
My first approach was:
f[x_] := Piecewise[{{0, x <= -1}, {-Abs[x] + 1, -1 < x < 1}, {0,
x >= 1}}]
Plot3D[ 5*f[x]*f[y], {x, -1.5, 1.5}, {y, -1.5, 1.5}]
I also tried to set MaxRecursion which lead to more terrible results in a few cases (e.g. 2,3).
Can anybody tell me how to plot this function in a smooth nice way?
Thanks,
Felix

As far as I can remember, making visible gaps was introduced as a feature. Before that, piecewise or discontinuous functions were plotted like this:
Plot[Piecewise[{{x, x <= 1}, {3, x > 1}}], {x, 0, 3}, Exclusions -> None]

That behavior gives the wrong impression. I would have to check when this was default or if I'm completely off here. Anyway, as already noted in the comments, you can use the Exclusions option to get connected graphs.
You don't need to increase PlotPoints because Mathematica will (hopefully always) recognize the boundaries of the pieces as places where it needs to recursively increase points. Therefore, the MaxRecursion option is far more important to give a smooth plot. This example was rendered with only 10 points, but a recursion value of 5:

Therefore, your function renders extremely well even with 10 plot-points when the recursion is high enough. Look how many subdivisions you get on the cracks
Plot3D[5*f[x]*f[y], {x, -1.5, 1.5}, {y, -1.5, 1.5}, PlotRange -> All,
Exclusions -> None, PlotPoints -> 10, MaxRecursion -> 6, Mesh -> All]

Finally, note that the gaps are not restricted to Piecewise functions. As you can verify yourself, UnitStep will also show gaps. You can try it with your example by using an undocumented function to turn everything to UnitStep:
Simplify`PWToUnitStep[5*f[x]*f[y]]
(*
5 (1 - Abs[x]) (1 - Abs[y]) (1 - UnitStep[-1 - x]) (1 -
UnitStep[-1 + x]) (1 - UnitStep[-1 - y]) (1 - UnitStep[-1 + y])
*)
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With