Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Map access bottleneck in Golang

I am using Golang to implement naive bayesian classification for a dataset with over 30000 possible tags. I have built the model and I am in the classification phase. I am working on classifying 1000 records and this is taking up to 5 minutes. I have profiled the code with pprof functionality; the top10 are shown below:

Total: 28896 samples
   16408  56.8%  56.8%    24129  83.5% runtime.mapaccess1_faststr
    4977  17.2%  74.0%     4977  17.2% runtime.aeshashbody
    2552   8.8%  82.8%     2552   8.8% runtime.memeqbody
    1468   5.1%  87.9%    28112  97.3% main.(*Classifier).calcProbs
     861   3.0%  90.9%      861   3.0% math.Log
     435   1.5%  92.4%      435   1.5% runtime.markspan
     267   0.9%  93.3%      302   1.0% MHeap_AllocLocked
     187   0.6%  94.0%      187   0.6% runtime.aeshashstr
     183   0.6%  94.6%     1137   3.9% runtime.mallocgc
     127   0.4%  95.0%      988   3.4% math.log10

Surprisingly the map access seems to be the bottleneck. Has anyone experienced this. What other key, value datastructure can be used to avoid this bottleneck? All the map access is done in the following piece of code given below:

func (nb *Classifier) calcProbs(data string) *BoundedPriorityQueue{
    probs := &BoundedPriorityQueue{} 
    heap.Init(probs)

    terms := strings.Split(data, " ")
    for class, prob := range nb.classProb{
        condProb := prob
        clsProbs := nb.model[class]
        for _, term := range terms{
            termProb := clsProbs[term]
            if termProb != 0{
                condProb += math.Log10(termProb)
            }else{
                condProb += -6 //math.Log10(0.000001)
            }
        }
       entry := &Item{
            value: class,
            priority: condProb,
        }
        heap.Push(probs,entry)
    }
    return probs
}

The maps are nb.classProb which is map[string]float64 while the nb.model is a nested map of type

map[string]map[string]float64
like image 223
cobie Avatar asked Nov 02 '25 01:11

cobie


1 Answers

In addition to what @tomwilde said, another approach that may speed up your algorithm is string interning. Namely, you can avoid using a map entirely if you know the domain of keys ahead of time. I wrote a small package that will do string interning for you.

like image 116
BurntSushi5 Avatar answered Nov 04 '25 02:11

BurntSushi5



Donate For Us

If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!