I have used SFINAE expressions to test for if a type supports operator<<
namespace details
{
  template<typename T>
  struct sfinae_true : std::true_type
  {
  };
  template<typename T>
  sfinae_true<decltype (std::declval<std::ostream &> () << std::declval<T const &> ())> test_for_ostream (int);
  template<typename T>
  std::false_type test_for_ostream (long);
}
template<typename T>
struct supports_ostream : decltype (details::test_for_ostream<T> (0))
{
};
What I would like to test is if this a type T can be iterated over like this
for (auto && v : vs) {} // vs is T const &
The dilemma is that this is a statement and not an expression which makes it incompatible to use with decltype
I was thinking to use lambdas to convert a statement to an expression like this
auto x = [] () { for (auto && v : vs) {}; return 0; } (); // vs is T const &
However decltype of expressions containing lambdas seems to be explicitly forbidden:
// Won't compile in clang, gcc nor VC++
using x_t = decltype ([] () { for (auto && v : vs) {}; return 0; } ()); // vs is T const &
So that disqualifies it for use in a test function like this:
namespace details
{
  template<typename T>
  sfinae_true<decltype (
    [] () { for (auto && v : std::declval<T const &> ()) ; } () 
    )> test_for_container (int); 
  // Won't work because lambdas aren't allowed in unevaluated contexts
  template<typename T>
  std::false_type test_for_container (long);
}
template<typename T>
struct is_container : decltype (details::test_for_container<T> (0))
{
};
So I have run out of ideas, so I thought perhaps someone @Stackoverflow can come up with something interesting.
PS.
I can somewhat understand why decltype ([] () {}) isn't allowed but decltype ([] () {} ()) should always be well-defined ie void.
For the majority of cases the following trait should suffice:
#include <type_traits>
#include <utility>
#include <iterator>
namespace detail
{
    using std::begin;
    using std::end;
    template <typename T>
    auto is_range_based_iterable(...)
        -> std::false_type;
    template <typename T
            , typename I = typename std::decay<decltype(std::declval<T>().begin())>::type>
    auto is_range_based_iterable(int)
        -> decltype(std::declval<T>().begin()
                  , std::declval<T>().end()
                  , ++std::declval<I&>()
                  , void()
                  , std::integral_constant<bool,
                       std::is_convertible<decltype(std::declval<I&>() != std::declval<I&>()), bool>::value
                    && !std::is_void<decltype(*std::declval<I&>())>::value
                    && std::is_copy_constructible<I>::value
                  >{});
    template <typename T
            , typename I = typename std::decay<decltype(begin(std::declval<T>()))>::type>
    auto is_range_based_iterable(char)
        -> decltype(begin(std::declval<T>())
                  , end(std::declval<T>())
                  , ++std::declval<I&>()
                  , void()
                  , std::integral_constant<bool,
                       std::is_convertible<decltype(std::declval<I&>() != std::declval<I&>()), bool>::value
                    && !std::is_void<decltype(*std::declval<I&>())>::value
                    && std::is_copy_constructible<I>::value
                  >{});
}
template <typename T>
struct is_range_based_iterable : decltype(detail::is_range_based_iterable<T>(0)) {};
Test:
#include <vector>
#include <array>
int main()
{
    static_assert(is_range_based_iterable<std::vector<int>>::value, "!");
    static_assert(is_range_based_iterable<std::array<int, 5>>::value, "!");
    static_assert(is_range_based_iterable<int(&)[5]>::value, "!");
}
DEMO
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With