I'm wondering how the following code could be faster. At the moment, it seems unreasonably slow, and I suspect I may be using the autograd API wrong. The output I expect is each element of timeline
evaluated at the jacobian of f, which I do get, but it takes a long time:
import numpy as np
from autograd import jacobian
def f(params):
mu_, log_sigma_ = params
Z = timeline * mu_ / log_sigma_
return Z
timeline = np.linspace(1, 100, 40000)
gradient_at_mle = jacobian(f)(np.array([1.0, 1.0]))
I would expect the following:
jacobian(f)
returns an function that represents the gradient vector w.r.t. the parameters. jacobian(f)(np.array([1.0, 1.0]))
is the Jacobian evaluated at the point (1, 1). To me, this should be like a vectorized numpy function, so it should execute very fast, even for 40k length arrays. However, this is not what is happening.Even something like the following has the same poor performance:
import numpy as np
from autograd import jacobian
def f(params, t):
mu_, log_sigma_ = params
Z = t * mu_ / log_sigma_
return Z
timeline = np.linspace(1, 100, 40000)
gradient_at_mle = jacobian(f)(np.array([1.0, 1.0]), timeline)
From https://github.com/HIPS/autograd/issues/439 I gathered that there is an undocumented function autograd.make_jvp
which calculates the jacobian with a fast forward mode.
The link states:
Given a function f, vectors x and v in the domain of f,
make_jvp(f)(x)(v)
computes both f(x) and the Jacobian of f evaluated at x, right multiplied by the vector v.To get the full Jacobian of f you just need to write a loop to evaluate
make_jvp(f)(x)(v)
for each v in the standard basis of f's domain. Our reverse mode Jacobian operator works in the same way.
From your example:
import autograd.numpy as np
from autograd import make_jvp
def f(params):
mu_, log_sigma_ = params
Z = timeline * mu_ / log_sigma_
return Z
timeline = np.linspace(1, 100, 40000)
gradient_at_mle = make_jvp(f)(np.array([1.0, 1.0]))
# loop through each basis
# [1, 0] evaluates (f(0), first column of jacobian)
# [0, 1] evaluates (f(0), second column of jacobian)
for basis in (np.array([1, 0]), np.array([0, 1])):
val_of_f, col_of_jacobian = gradient_at_mle(basis)
print(col_of_jacobian)
Output:
[ 1. 1.00247506 1.00495012 ... 99.99504988 99.99752494
100. ]
[ -1. -1.00247506 -1.00495012 ... -99.99504988 -99.99752494
-100. ]
This runs in ~ 0.005 seconds on google collab.
Edit:
Functions like cdf
aren't defined for the regular jvp
yet but you can use another undocumented function make_jvp_reversemode
where it is defined. Usage is similar except that the output is only the column and not the value of the function:
import autograd.numpy as np
from autograd.scipy.stats.norm import cdf
from autograd.differential_operators import make_jvp_reversemode
def f(params):
mu_, log_sigma_ = params
Z = timeline * cdf(mu_ / log_sigma_)
return Z
timeline = np.linspace(1, 100, 40000)
gradient_at_mle = make_jvp_reversemode(f)(np.array([1.0, 1.0]))
# loop through each basis
# [1, 0] evaluates first column of jacobian
# [0, 1] evaluates second column of jacobian
for basis in (np.array([1, 0]), np.array([0, 1])):
col_of_jacobian = gradient_at_mle(basis)
print(col_of_jacobian)
Output:
[0.05399097 0.0541246 0.05425823 ... 5.39882939 5.39896302 5.39909665]
[-0.05399097 -0.0541246 -0.05425823 ... -5.39882939 -5.39896302 -5.39909665]
Note that make_jvp_reversemode
will be slightly faster than make_jvp
by a constant factor due to it's use of caching.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With