I compiled the following cords with g++
#include <iostream>
#include <string>
using namespace std;
template<class T>
class Node<const char*>{
private:
string x_;
Node* next_;
public:
Node (const char* k, Node* next):next_(next),x_(k){}
string data(){return x_;}
Node *get_next(){return next_;}
};
$ g++ -c node01.cc
node01.cc:5: error: ‘Node’ is not a template
What's wrong? I'm begginer for c++
You're mixing up declarations and instantiations. When you declare a template, you don't specify a type immediately after its name. Instead, declare it like this:
template<class T>
class Node {
private:
const T x_;
Node *next_;
public:
Node (const T& k, Node *next) : x_(k), next_(next) { }
const T& data(){return x_;}
Node *get_next(){return next_;}
};
Your original declaration also confuses string, const char *, and generic types that should be in terms of T. For a template like this, you probably want to let the user define the type of the member (x_). If you explicitly declare it as const char * or string, you're losing genericity by limiting what the user can use for T.
Notice that I changed the types of the instance variables, the parameters of the constructor and the return type of data() to be in terms of T, too.
When you actually instantiate a variable of the template type, you can provide a concrete type parameter, e.g.:
int main(int argc, const char **argv) {
Node<char*> *tail = new Node<char*>("tail", NULL);
Node<char*> *node = new Node<char*>("node", tail);
// do stuff to mynode and mytail
}
Whenever you write the template name Node outside the template declaration, it's not complete until you provide a value for the parameter T. If you just say Node, the compiler won't know what kind of node you wanted.
The above is a little verbose, so you might also simplify it with a typedef when you actually use it:
typedef Node<char*> StringNode;
int main(int argc, const char **argv) {
StringNode *tail = new StringNode("tail", NULL);
StringNode *node = new StringNode("node", tail);
// do stuff to mynode and mytail
}
Now you've built a linked list of two nodes. You can print out all the values in the list with something like this:
for (StringNode *n = node; n; n = n->get_next()) {
cout << n->data() << endl;
}
If all goes well, this will print out:
node
tail
Your class declaration should look like this:
template<class T>
class Node{
private:
T x_;
Node* next_;
public:
Node (const T& k, Node* next):next_(next),x_(k){}
T data(){return x_;}
Node *get_next(){return next_;}
};
Notice how I removed all references to string or const char * and replaced them with the generic type T. Your class, since it is templated, should not refer to any specific type but should do everything in terms of the generic T type.
The const char * is specified later when you declare a Node variable. Or it could be any other type, not just const char *. The point is, when you're declaring the Node class you just use the generic type T in the code without reference to any specific type. You specify a specific type only when you actually use a Node.
Node<const char *> stringNode("foo", NULL);
Node<int> intNode(5, NULL);
This has allowed us to have a single definition of the Node class but be able to use it to create both nodes where the data is a string and nodes where the data is an integer. Hooray templating!
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With