I want to feed a CNN with the tensor "images". I want this tensor to contain images from the training set ( which have FIXED size ) when the placeholder is_training is True, otherwise I want it to contain images from the test set ( which are of NOT FIXED size ).
This is needed because in training I take a random fixed crop from the training images, while in test I want to perform a dense evaluation and feed the entire images inside the network ( it is fully convolutional so it will accept them)
The current NOT WORKING way is to create two different iterators, and try to select the training/test input with tf.cond at the session.run(images,{is_training:True/False}).
The problem is that BOTH the iterators are evaluated. The training and test dataset are also of different size so I cannot iterate both of them until the end. Is there a way to make this work? Or to rewrite this in a smarter way?
I've seen some questions/answers about this but they always used tf.assign which takes a numpy array and assigns it to a tensor. In this case I cannot use tf.assign because I already have a tensor coming from the iterators.
The current code that I have is this one. It simply checks the shape of the tensor "images":
train_filenames, train_labels = list_images(args.train_dir)
val_filenames, val_labels = list_images(args.val_dir)
graph = tf.Graph()
with graph.as_default():
# Preprocessing (for both training and validation):
def _parse_function(filename, label):
image_string = tf.read_file(filename)
image_decoded = tf.image.decode_jpeg(image_string, channels=3)
image = tf.cast(image_decoded, tf.float32)
return image, label
# Preprocessing (for training)
def training_preprocess(image, label):
# Random flip and crop
image = tf.image.random_flip_left_right(image)
image = tf.random_crop(image, [args.crop,args.crop, 3])
return image, label
# Preprocessing (for validation)
def val_preprocess(image, label):
flipped_image = tf.image.flip_left_right(image)
batch = tf.stack([image,flipped_image],axis=0)
return batch, label
# Training dataset
train_filenames = tf.constant(train_filenames)
train_labels = tf.constant(train_labels)
train_dataset = tf.contrib.data.Dataset.from_tensor_slices((train_filenames, train_labels))
train_dataset = train_dataset.map(_parse_function,num_threads=args.num_workers, output_buffer_size=args.batch_size)
train_dataset = train_dataset.map(training_preprocess,num_threads=args.num_workers, output_buffer_size=args.batch_size)
train_dataset = train_dataset.shuffle(buffer_size=10000)
batched_train_dataset = train_dataset.batch(args.batch_size)
# Validation dataset
val_filenames = tf.constant(val_filenames)
val_labels = tf.constant(val_labels)
val_dataset = tf.contrib.data.Dataset.from_tensor_slices((val_filenames, val_labels))
val_dataset = val_dataset.map(_parse_function,num_threads=1, output_buffer_size=1)
val_dataset = val_dataset.map(val_preprocess,num_threads=1, output_buffer_size=1)
train_iterator = tf.contrib.data.Iterator.from_structure(batched_train_dataset.output_types,batched_train_dataset.output_shapes)
val_iterator = tf.contrib.data.Iterator.from_structure(val_dataset.output_types,val_dataset.output_shapes)
train_images, train_labels = train_iterator.get_next()
val_images, val_labels = val_iterator.get_next()
train_init_op = train_iterator.make_initializer(batched_train_dataset)
val_init_op = val_iterator.make_initializer(val_dataset)
# Indicates whether we are in training or in test mode
is_training = tf.placeholder(tf.bool)
def f_true():
with tf.control_dependencies([tf.identity(train_images)]):
return tf.identity(train_images)
def f_false():
return val_images
images = tf.cond(is_training,f_true,f_false)
num_images = images.shape
with tf.Session(graph=graph) as sess:
sess.run(train_init_op)
#sess.run(val_init_op)
img = sess.run(images,{is_training:True})
print(img.shape)
The problem is that when I want to use only the training iterator, I comment the line to initialize the val_init_op but there is the following error:
FailedPreconditionError (see above for traceback): GetNext() failed because the iterator has not been initialized. Ensure that you have run the initializer operation for this iterator before getting the next element.
[[Node: IteratorGetNext_1 = IteratorGetNext[output_shapes=[[2,?,?,3], []], output_types=[DT_FLOAT, DT_INT32], _device="/job:localhost/replica:0/task:0/cpu:0"](Iterator_1)]]
If I do not comment that line everything works as expected, when is_training is true I get training images and when is_training is False I get validation images. The issue is that both the iterators need to be initialized and when I evaluate one of them, the other is incremented too. Since as I said they are of different size this causes an issue.
I hope there is a way to solve it! Thanks in advance
The trick is to call iterator.get_next() inside the f_true() and f_false() functions:
def f_true():
train_images, _ = train_iterator.get_next()
return train_images
def f_false():
val_images, _ = val_iterator.get_next()
return val_images
images = tf.cond(is_training, f_true, f_false)
The same advice applies to any TensorFlow op that has a side effect, like assigning to a variable: if you want that side effect to happen conditionally, the op must be created inside the appropriate branch function passed to tf.cond().
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With