I have a huge dataframe which has values and blanks/NA's in it. I want to remove the blanks from the dataframe and move the next values up in the column. Consider below sample dataframe.
import pandas as pd
import numpy as np
df = pd.DataFrame(np.random.randn(5,4))
df.iloc[1,2] = np.NaN
df.iloc[0,1] = np.NaN
df.iloc[2,1] = np.NaN
df.iloc[2,0] = np.NaN
df
0 1 2 3
0 1.857476 NaN -0.462941 -0.600606
1 0.000267 -0.540645 NaN 0.492480
2 NaN NaN -0.803889 0.527973
3 0.566922 0.036393 -1.584926 2.278294
4 -0.243182 -0.221294 1.403478 1.574097
I want my output to be as below
0 1 2 3
0 1.857476 -0.540645 -0.462941 -0.600606
1 0.000267 0.036393 -0.803889 0.492480
2 0.566922 -0.221294 -1.584926 0.527973
3 -0.243182 1.403478 2.278294
4 1.574097
I want the NaN to be removed and the next value to move up. df.shift was not helpful. I tried with multiple loops and if statements and achieved the desired result but is there any better way to get it done.
The dropna() method removes the rows that contains NULL values. The dropna() method returns a new DataFrame object unless the inplace parameter is set to True , in that case the dropna() method does the removing in the original DataFrame instead.
fillna() function of Pandas conveniently handles missing values. Using fillna(), missing values can be replaced by a special value or an aggreate value such as mean, median. Furthermore, missing values can be replaced with the value before or after it which is pretty useful for time-series datasets.
You can use apply with dropna:
np.random.seed(100)
df = pd.DataFrame(np.random.randn(5,4))
df.iloc[1,2] = np.NaN
df.iloc[0,1] = np.NaN
df.iloc[2,1] = np.NaN
df.iloc[2,0] = np.NaN
print (df)
0 1 2 3
0 -1.749765 NaN 1.153036 -0.252436
1 0.981321 0.514219 NaN -1.070043
2 NaN NaN -0.458027 0.435163
3 -0.583595 0.816847 0.672721 -0.104411
4 -0.531280 1.029733 -0.438136 -1.118318
df1 = df.apply(lambda x: pd.Series(x.dropna().values))
print (df1)
0 1 2 3
0 -1.749765 0.514219 1.153036 -0.252436
1 0.981321 0.816847 -0.458027 -1.070043
2 -0.583595 1.029733 0.672721 0.435163
3 -0.531280 NaN -0.438136 -0.104411
4 NaN NaN NaN -1.118318
And then if need replace to empty space, what create mixed values - strings with numeric - some functions can be broken:
df1 = df.apply(lambda x: pd.Series(x.dropna().values)).fillna('')
print (df1)
0 1 2 3
0 -1.74977 0.514219 1.15304 -0.252436
1 0.981321 0.816847 -0.458027 -1.070043
2 -0.583595 1.02973 0.672721 0.435163
3 -0.53128 -0.438136 -0.104411
4 -1.118318
A numpy approach
The idea is to sort the columns by np.isnan so that np.nans are put last. I use kind='mergesort' to preserve the order within non np.nan. Finally, I slice the array and reassign it. I follow this up with a fillna
v = df.values
i = np.arange(v.shape[1])
a = np.isnan(v).argsort(0, kind='mergesort')
v[:] = v[a, i]
print(df.fillna(''))
0 1 2 3
0 1.85748 -0.540645 -0.462941 -0.600606
1 0.000267 0.036393 -0.803889 0.492480
2 0.566922 -0.221294 -1.58493 0.527973
3 -0.243182 1.40348 2.278294
4 1.574097
If you didn't want to alter the dataframe in place
v = df.values
i = np.arange(v.shape[1])
a = np.isnan(v).argsort(0, kind='mergesort')
pd.DataFrame(v[a, i], df.index, df.columns).fillna('')
The point of this is to leverage numpys quickness
naive time test

If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With