Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

How to pivot from columns to rows in Pandas

Tags:

python

pandas

data = [[1, 'tom', 10, 53, 2, 3, 9, 6 ], [2, 'nick', 1, 53, 2, 23, 4, 7], [3, 'juli', 9, 23, 2, 31, 9, 3]]
  
df = pd.DataFrame(data, columns = ['ID', 'Name', 'Apple.Food.0', 'Apple.Food.1', 'Apple.Food.2', 'Pear.Food.0', 'Pear.Food.1', 'Pear.Food.2'])
  
df
ID Name Apple.Food.0 Apple.Food.1 Apple.Food.2 Pear.Food.0 Pear.Food.1 Pear.Food.2
1 tom 10 53 2 3 9 6
2 nick 1 53 2 23 4 7
3 juli 9 23 2 31 9 3

I want to unpack last 6 columns to like: i.e. Apple.Food.0 - unpack prefix 'Apple' to the rows, unpack suffix '0' to the rows, keep 'Food' as the column name and keep the value there; then regenerate the ID column as the PK.

I tried to use .str.split() to split the column, however, the value will comes with all the spited columns. Any built-in pandas function could achieve this easily?

ID Name Fruit Time Food
1 tom Apple 0 10
2 tom Apple 1 53
3 tom Apple 2 2
4 tom Pear 0 3
5 tom Pear 1 9
6 tom Pear 2 6
7 nick Apple 0 1
8 nick Apple 1 53
9 nick Apple 2 2
10 nick Pear 0 23
11 nick Pear 1 4
12 nick Pear 2 7
13 juli Apple 0 9
14 juli Apple 1 23
15 juli Apple 2 2
16 juli Pear 0 31
17 juli Pear 1 9
18 juli Pear 2 3
like image 950
Hello World Avatar asked Oct 28 '25 17:10

Hello World


1 Answers

Use DataFrame.set_index for MultiIndex with columns without . first, then str.split with columns, reshape by DataFrame.stack, check index names by DataFrame.rename_axis and last add DataFrame.reset_index:

df1 = df.set_index(['ID','Name'])
df1.columns = df1.columns.str.split('.', expand=True)
df1 = df1.stack([0,2]).rename_axis(['ID','Name','Fruit','Time']).reset_index()
print (df1)
    ID  Name  Fruit Time  Food
0    1   tom  Apple    0    10
1    1   tom  Apple    1    53
2    1   tom  Apple    2     2
3    1   tom   Pear    0     3
4    1   tom   Pear    1     9
5    1   tom   Pear    2     6
6    2  nick  Apple    0     1
7    2  nick  Apple    1    53
8    2  nick  Apple    2     2
9    2  nick   Pear    0    23
10   2  nick   Pear    1     4
11   2  nick   Pear    2     7
12   3  juli  Apple    0     9
13   3  juli  Apple    1    23
14   3  juli  Apple    2     2
15   3  juli   Pear    0    31
16   3  juli   Pear    1     9
17   3  juli   Pear    2     3

Performance:

#3k rows
df = pd.concat([df] * 1000, ignore_index=True)

def f1():
    df1 = df.set_index(['ID','Name'])
    df1.columns = df1.columns.str.split('.', expand=True)
    df1 = df1.stack([0,2]).rename_axis(['ID','Name','Fruit','Time']).reset_index()
    
def f2():
    x = df.melt(['ID', 'Name'], value_name='Food')
    x[['Fruit', 'Time']] = x.variable.str.split('.', expand=True)[[0,2]]
    x = x.sort_values(['ID', 'Fruit']).reset_index(drop=True).drop('variable', 1)
    

In [41]: %timeit f1()
27.4 ms ± 1.6 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)

In [42]: %timeit f2()
53.1 ms ± 1.6 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
like image 182
jezrael Avatar answered Oct 31 '25 07:10

jezrael



Donate For Us

If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!