Given a 3 times 3 numpy array
a = numpy.arange(0,27,3).reshape(3,3) # array([[ 0, 3, 6], # [ 9, 12, 15], # [18, 21, 24]]) To normalize the rows of the 2-dimensional array I thought of
row_sums = a.sum(axis=1) # array([ 9, 36, 63]) new_matrix = numpy.zeros((3,3)) for i, (row, row_sum) in enumerate(zip(a, row_sums)): new_matrix[i,:] = row / row_sum There must be a better way, isn't there?
Perhaps to clearify: By normalizing I mean, the sum of the entrys per row must be one. But I think that will be clear to most people.
Broadcasting is really good for this:
row_sums = a.sum(axis=1) new_matrix = a / row_sums[:, numpy.newaxis] row_sums[:, numpy.newaxis] reshapes row_sums from being (3,) to being (3, 1). When you do a / b, a and b are broadcast against each other.
You can learn more about broadcasting here or even better here.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With