I have dataframe like
import pandas as pd
x = [
{
"timestamp" :1576019484523,
"status": "1"
},
{
"timestamp" :1576019496337,
"status": "0"
},
{
"timestamp" :1576019548740,
"status": "1"
},
{
"timestamp" :1576020996586,
"status": "0"
}
]
data_frame = pd.DataFrame(x)
DataFrame
0 1576019484523 1
1 1576019496337 0
2 1576019548740 1
3 1576020996586 0
I want to convert this data like this :
[
{
"range" :"1576019484523 - 1576019496337",
"status": "1"
},
{
"range" : "1576019496337 - 1576019548740",
"status": "0"
},
{
"range" :"1576019548740 - 1576020996586",
"status": "1"
}
]
In case of the number of item count is odd I dont know how to resolve this. If there is any function in pandas I want to know or any function that would help me in python
[t0-t1] status 0
[t1-t2] status 1
[t2-t3] status 0
[t3-t4] status 1
You could do with without the need for pandas - using list comprehension:
[{'range': f"{i['timestamp']} - {j['timestamp']}", 'status': i['status']}
for i, j in zip(x, x[1:])]
[out]
[{'range': '1576019484523 - 1576019496337', 'status': '1'},
{'range': '1576019496337 - 1576019548740', 'status': '0'},
{'range': '1576019548740 - 1576020996586', 'status': '1'}]
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With