I try to make a clock, in swift, but now i want to make something strange. I want make border radius settable. This is the easy part (is easy because I already did that). I drew 60 ticks around the clock. The problem is that 60 ticks are a perfect circle. If I change the border radius I obtain this clock:

All ticks are made with NSBezierPath, and code for calculate position for every tick is :
tickPath.moveToPoint(CGPoint(
x: center.x + cos(angle) * point1 ,
y: center.y + sin(angle) * point1
))
tickPath.lineToPoint(CGPoint(
x: center.x + cos(angle) * point2,
y: center.y + sin(angle) * point2
))
point1 and point2 are points for 12 clock tick.
My clock background is made with bezier path:
let bezierPath = NSBezierPath(roundedRect:self.bounds, xRadius:currentRadius, yRadius:currentRadius)
currentRadius - is a settable var , so my background cam be, from a perfect circle (when corner radius = height / 2) to a square (when corner radius = 0 ).
Is any formula to calculate position for every tick so, for any border radius , in the end all ticks to be at same distance to border ?
The maths is rather complicated to explain without recourse to graphics diagrams, but basically if you consider a polar coordinates approach with the origin at the clock centre then there are two cases:
This function does it:
func radiusAtAngle(angleOfSpoke: Double, radius: Double, cornerRadius: Double) -> Double {
// radius is the half-width of the square, = the full radius of the circle
// cornerRadius is, of course, the corner radius.
// angleOfSpoke is the (maths convention) angle of the spoke
// the function returns the radius of the spoke.
let theta = atan((radius - cornerRadius) / radius) // This determines which case
let modAngle = angleOfSpoke % M_PI_2 // By symmetry we need only consider the first quadrant
if modAngle <= theta { // it's on the vertical flat
return radius / cos(modAngle)
} else if modAngle > M_PI_2 - theta { // it's on the horizontal flat
return radius / cos(M_PI_2 - modAngle)
} else { // it's on the corner arc
// We are using the cosine rule to solve the triangle formed by
// the clock centre, the curved corner's centre,
// and the point of intersection of the spoke.
// Then use quadratic solution to solve for the radius.
let diagonal = hypot(radius - cornerRadius, radius - cornerRadius)
let rcosa = diagonal * cos(M_PI_4 - modAngle)
let sqrTerm = rcosa * rcosa - diagonal * diagonal + cornerRadius * cornerRadius
if sqrTerm < 0.0 {
println("Aaargh - Negative term") // Doesn't happen - use assert in production
return 0.0
} else {
return rcosa + sqrt(sqrTerm) // larger of the two solutions
}
}
}
In the diagram OP = diagonal, OA = radius, PS = PB = cornerRadius, OS = function return, BÔX = theta, SÔX = angleOfSpoke

If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With