I want to efficiently and elegantly compute with perfect precision the first x leading binary digits of 5**x?
For example 5**20 is 10101101011110001110101111000101101011000110001. The first 8 leading binary digits is 10101101.
In my use case, x is only up to 1-60. I don't want to create a table. A solution using 64-bit integers would be fine. I just don't want to use big integers.
first x leading binary digits of 5**x without big integer multiplication
efficiently and elegantly compute with perfect precision the first x leading binary digits of 5x?
"compute with perfect precision" leaves out pow(). Too many implementations will return an imperfect result and FP math might not use 64 bit precision, even with long double.
Form an integer with a 64-bit whole number part .ms and a 64-bit fraction part .ls. Then loop 60 times, multiply by 5 and diving by 2 as needed, to keep the leading bits from growing too big.
Note there is some precision lost in the fraction, with N > 42, yet that is not significant enough to affect the whole number part OP is seeking.
#include <inttypes.h>
#include <stdint.h>
#include <stdio.h>
typedef struct {
uint64_t ms, ls;
} uint128;
// Simplifications possible here, leave for OP
uint128 times5(uint128 x) {
uint128 y = x;
for (int i=1; i<5; i++) {
// y += x
y.ms += x.ms;
y.ls += x.ls;
if (y.ls < x.ls) y.ms++;
}
return y;
}
uint128 div2(uint128 x) {
x.ls = (x.ls >> 1) | (x.ms << 63);
x.ms >>= 1;
return x;
}
int main(void) {
uint128 y = {.ms = 1};
uint64_t pow2 = 2;
for (unsigned x = 1; x <= 60; x++) {
y = times5(y);
while (y.ms >= pow2) {
y = div2(y);
}
printf("%2u %16" PRIX64 ".%016" PRIX64 "\n", x, y.ms, y.ls);
pow2 <<= 1;
}
}
Output
whole part.fraction
1 1.4000000000000000
2 3.2000000000000000
3 7.D000000000000000
4 9.C400000000000000
...
57 14643E5AE44D12B.8F5FEE5AA432560D
58 32FA9BE33AC0AEC.E66FD3E29A7DD720
59 7F7285B812E1B50.401791B6823A99D0
60 9F4F2726179A224.501D762422C94044
^-------------^ This is the part OP is seeking.
The key to solving this task is: divide and conquer. Form an algorithm, (which is simply *5 and /2 as needed), and code a type and functions to do each small step.
Is a loop of 60 efficient? Perhaps not. Another approach would use Exponentiation by squaring. Certainly would be worth it for large N, yet for N == 60, a loop was simple enough for a quick turn.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With