Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

How to find cumulative sum of items in a list of dictionaries in python

I have a list which is like

a=[{'time':3},{'time':4},{'time':5}]

I want to get the cumulative sum of the values in reversed order like this

b=[{'exp':3,'cumsum':12},{'exp':4,'cumsum':9},{'exp':5,'cumsum':5}]

What is the most efficient way to get this ? I have read other answer where using numpy gives the solution like

a=[1,2,3]
b=numpy.cumsum(a)

but I need to insert the cumsum in the dictionary as well

like image 545
NG_21 Avatar asked Oct 21 '25 18:10

NG_21


1 Answers

a=[{'time':3},{'time':4},{'time':5}]
b = []
cumsum = 0
for e in a[::-1]:
    cumsum += e['time']
    b.insert(0, {'exp':e['time'], 'cumsum':cumsum})
print(b)

Output:

[{'exp': 3, 'cumsum': 12}, {'exp': 4, 'cumsum': 9}, {'exp': 5, 'cumsum': 5}]


So it turns out that inserting at the start of a list is slow (O(n)). Instead, try a deque (O(1)):
from collections import deque


a=[{'time':3},{'time':4},{'time':5}]
b = deque()
cumsum = 0
for e in a[::-1]:
    cumsum += e['time']
    b.appendleft({'exp':e['time'], 'cumsum':cumsum})
print(b)
print(list(b))

Output:

deque([{'cumsum': 12, 'exp': 3}, {'cumsum': 9, 'exp': 4}, {'cumsum': 5, 'exp': 5}])
[{'cumsum': 12, 'exp': 3}, {'cumsum': 9, 'exp': 4}, {'cumsum': 5, 'exp': 5}]


Here is a script to test the speed of each of the approaches ITT, as well as a chart with timing results:

enter image description here

from collections import deque
from copy import deepcopy
import numpy as np
import pandas as pd
from random import randint
from time import time


def Nehal_pandas(l):
    df = pd.DataFrame(l)
    df['cumsum'] = df.ix[::-1, 'time'].cumsum()[::-1]
    df.columns = ['exp', 'cumsum']
    return df.to_json(orient='records')


def Merlin_pandas(l):
    df           = pd.DataFrame(l).rename(columns={'time':'exp'})
    df["cumsum"] = df['exp'][::-1].cumsum()
    return df.to_dict(orient='records')


def RahulKP_numpy(l):
    cumsum_list = np.cumsum([i['time'] for i in l][::-1])[::-1]
    for i,j in zip(l,cumsum_list):
        i.update({'cumsum':j})


def Divakar_pandas(l):
    df = pd.DataFrame(l)
    df.columns = ['exp']
    df['cumsum'] = (df[::-1].cumsum())[::-1]
    return df.T.to_dict().values()


def cb_insert_0(l):
    b = []
    cumsum = 0
    for e in l[::-1]:
        cumsum += e['time']
        b.insert(0, {'exp':e['time'], 'cumsum':cumsum})
    return b


def cb_deque(l):
    b = deque()
    cumsum = 0
    for e in l[::-1]:
        cumsum += e['time']
        b.appendleft({'exp':e['time'], 'cumsum':cumsum})
    b = list(b)
    return b


def cb_deque_noconvert(l):
    b = deque()
    cumsum = 0
    for e in l[::-1]:
        cumsum += e['time']
        b.appendleft({'exp':e['time'], 'cumsum':cumsum})
    return b


def hpaulj_gen(l, var='value'):
    cum=0
    for i in l:
        j=i[var]
        cum += j
        yield {var:j, 'sum':cum}


def hpaulj_inplace(l, var='time'):
    cum = 0
    for i in l:
        cum += i[var]
        i['sum'] = cum


def test(number_of_lists, min_list_length, max_list_length):
    test_lists = []

    for _ in range(number_of_lists):
        test_list = []
        number_of_dicts = randint(min_list_length,max_list_length)
        for __ in range(number_of_dicts):
            random_value = randint(0,50)
            test_list.append({'time':random_value})
        test_lists.append(test_list)

    lists = deepcopy(test_lists)
    start_time = time()
    for l in lists:
        res = list(hpaulj_gen(l[::-1], 'time'))[::-1]
    elapsed_time = time() - start_time
    print('hpaulj generator:'.ljust(25), '%.2f' % (number_of_lists / elapsed_time), 'lists per second')

    lists = deepcopy(test_lists)
    start_time = time()
    for l in lists:
        hpaulj_inplace(l[::-1])
    elapsed_time = time() - start_time
    print('hpaulj in place:'.ljust(25), '%.2f' % (number_of_lists / elapsed_time), 'lists per second')

    lists = deepcopy(test_lists)
    start_time = time()
    for l in lists:
        res = cb_insert_0(l)
    elapsed_time = time() - start_time
    print('craig insert list at 0:'.ljust(25), '%.2f' % (number_of_lists / elapsed_time), 'lists per second')

    lists = deepcopy(test_lists)
    start_time = time()
    for l in lists:
        res = cb_deque(l)
    elapsed_time = time() - start_time
    print('craig deque:'.ljust(25), '%.2f' % (number_of_lists / elapsed_time), 'lists per second')

    lists = deepcopy(test_lists)
    start_time = time()
    for l in lists:
        res = cb_deque_noconvert(l)
    elapsed_time = time() - start_time
    print('craig deque no convert:'.ljust(25), '%.2f' % (number_of_lists / elapsed_time), 'lists per second')

    lists = deepcopy(test_lists)
    start_time = time()
    for l in lists:
        RahulKP_numpy(l) # l changed in place
    elapsed_time = time() - start_time
    print('Rahul K P numpy:'.ljust(25), '%.2f' % (number_of_lists / elapsed_time), 'lists per second')

    lists = deepcopy(test_lists)
    start_time = time()
    for l in lists:
        res = Divakar_pandas(l)
    elapsed_time = time() - start_time
    print('Divakar pandas:'.ljust(25), '%.2f' % (number_of_lists / elapsed_time), 'lists per second')

    lists = deepcopy(test_lists)
    start_time = time()
    for l in lists:
        res = Nehal_pandas(l)
    elapsed_time = time() - start_time
    print('Nehal pandas:'.ljust(25), '%.2f' % (number_of_lists / elapsed_time), 'lists per second')

    lists = deepcopy(test_lists)
    start_time = time()
    for l in lists:
        res = Merlin_pandas(l)
    elapsed_time = time() - start_time
    print('Merlin pandas:'.ljust(25), '%.2f' % (number_of_lists / elapsed_time), 'lists per second')
like image 81
Craig Burgler Avatar answered Oct 23 '25 08:10

Craig Burgler



Donate For Us

If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!