I'm trying to implement fast double Fibonacci algorithm as described here:
// Fast doubling Fibonacci algorithm
package main
import "fmt"
// (Public) Returns F(n).
func fibonacci(n int) int {
if n < 0 {
panic("Negative arguments not implemented")
}
fst, _ := fib(n)
return fst
}
// (Private) Returns the tuple (F(n), F(n+1)).
func fib(n int) (int, int) {
if n == 0 {
return 0, 1
}
a, b := fib(n / 2)
c := a * (b*2 - a)
d := a*a + b*b
if n%2 == 0 {
return c, d
} else {
return d, c + d
}
}
func main() {
fmt.Println(fibonacci(13))
fmt.Println(fibonacci(14))
}
This works fine for small numbers; however, when the input number get larger, the program returns a wrong result. So I tried to use bigInt from math/big package:
// Fast doubling Fibonacci algorithm
package main
import (
"fmt"
"math/big"
)
// (Public) Returns F(n).
func fibonacci(n int) big.Int {
if n < 0 {
panic("Negative arguments not implemented")
}
fst, _ := fib(n)
return fst
}
// (Private) Returns the tuple (F(n), F(n+1)).
func fib(n int) (big.Int, big.Int) {
if n == 0 {
return big.Int(0), big.Int(1)
}
a, b := fib(n / 2)
c := a * (b*2 - a)
d := a*a + b*b
if n%2 == 0 {
return c, d
} else {
return d, c + d
}
}
func main() {
fmt.Println(fibonacci(123))
fmt.Println(fibonacci(124))
}
However, go build complains that
cannot convert 0 (type int) to type big.Int
How to mitigate this problem?
Golang doesn't check for overflows implicitly and so this may lead to unexpected results when a number larger than 64 bits are stored in a int64. To solve this problem, Go provides the Package “big” which implements arbitrary-precision arithmetic (big numbers).
Go is a statically typed language, which means types of variables must be known at compile time, and you can't change their type at runtime.
Use big.NewInt() instead of big.Int(). big.Int() is just type casting.
You need to check out documentation of big package
You should mostly use methods with form func (z *T) Binary(x, y *T) *T // z = x op y
To multiply 2 arguments you need to provide result variable, after it call Mul method. So, for example, to get result of 2*2 you need to:big.NewInt(0).Mul(big.NewInt(2), big.NewInt(2))
You can try working example on the Go playground
Also you can create extension functions like:
func Mul(x, y *big.Int) *big.Int {
return big.NewInt(0).Mul(x, y)
}
To make code more readable:
// Fast doubling Fibonacci algorithm
package main
import (
"fmt"
"math/big"
)
// (Public) Returns F(n).
func fibonacci(n int) *big.Int {
if n < 0 {
panic("Negative arguments not implemented")
}
fst, _ := fib(n)
return fst
}
// (Private) Returns the tuple (F(n), F(n+1)).
func fib(n int) (*big.Int, *big.Int) {
if n == 0 {
return big.NewInt(0), big.NewInt(1)
}
a, b := fib(n / 2)
c := Mul(a, Sub(Mul(b, big.NewInt(2)), a))
d := Add(Mul(a, a), Mul(b, b))
if n%2 == 0 {
return c, d
} else {
return d, Add(c, d)
}
}
func main() {
fmt.Println(fibonacci(123))
fmt.Println(fibonacci(124))
}
func Mul(x, y *big.Int) *big.Int {
return big.NewInt(0).Mul(x, y)
}
func Sub(x, y *big.Int) *big.Int {
return big.NewInt(0).Sub(x, y)
}
func Add(x, y *big.Int) *big.Int {
return big.NewInt(0).Add(x, y)
}
Try it on the Go playground
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With