pass_through <- function(data, fun) {fun(data); data}
#from Printing intermediate results without breaking pipeline in tidyverse answer
mtcars %>% filter(mpg>15) %>% pass_through(. %>% nrow %>% print)
From the code above, I can print the number of rows of the data after filtering. But I cannot print the difference of number of rows between the original data and the data after filtering.
> mtcars %>% filter(mpg>15) %>% pass_through(. %>% nrow %>% print(.-nrow(mtcars)))
Error in print.default(., . - nrow(mtcars)) : invalid printing digits -6
Question 1: Are there any ways to check the difference without using any extra variables and breaking pipeline?
Question 2: Are there any ways to check the difference between 'n'th pipeline and 'n+1'th pipeline without using any extra variables and breaking pipeline?
For example, by using the code from Gregor Thomas,
mtcars %>%
filter(mpg > 30) %T>% #let this output to be y
{\(x) (nrow(mtcars) - nrow(x)) %>% print}() %>%
filter(cyl > 5) %T>%
{\(x) (nrow(y) - nrow(x)) %>% print}()
#I know it is illegal to write 'y'
I'd suggest using the magrittr %T>% "tee" pipe for the pass-through, with an anonymous function expression:
library(magrittr)
mtcars %>%
filter(mpg > 30) %T>%
{\(x) (nrow(mtcars) - nrow(x)) %>% print}()
# [1] 28
# mpg cyl disp hp drat wt qsec vs am gear carb
# Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
# Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
# Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
# Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2
You may change the function as following -
library(dplyr)
filter_pass_through <- function(data, ...) {
res <- filter(data, ...)
print(nrow(data) - nrow(res))
res
}
mtcars %>% filter_pass_through(mpg>15)
#[1] 6
# mpg cyl disp hp drat wt qsec vs am gear carb
#Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
#Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
#Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
#Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
#Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2
#Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1
#...
#...
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With