I understand how you specify specific ticks to show in Bokeh, but my question is if there is a way to assign a specific label to show versus the position. So for example
plot.xaxis[0].ticker=FixedTicker(ticks=[0,1])
will only show the x-axis labels at 0 and 1, but what if instead of showing 0 and 1 I wanted to show Apple and Orange. Something like
plot.xaxis[0].ticker=FixedTicker(ticks=[0,1], labels=['Apple', 'Orange'])
A histogram won't work for the data I am plotting. Is there anyway to use custom labels in Bokeh like this?
Ticks are the markers denoting data points on the axes and tick labels are the name given to ticks. By default matplotlib itself marks the data points on the axes but it has also provided us with setting their own axes having ticks and tick labels of their choice.
In this article, we will discuss how to adjust the number of ticks in Seaborn Plots. Ticks are the values that are used to show some specific points on the X-Y coordinate, It can be a string or a number. We will see how we can choose an optimal or expand the number of ticks to display on both the x-axis and y-axis.
xticks( ticks ) sets the x-axis tick values, which are the locations along the x-axis where the tick marks appear. Specify ticks as a vector of increasing values; for example, [0 2 4 6] . This command affects the current axes.
As of even more recent versions of Bokeh (0.12.14 or so) this is even simpler. Fixed ticks can just be passed directly as the "ticker" value, and major label overrides can be provided to explicitly supply custom labels for specific values:
from bokeh.io import output_file, show
from bokeh.plotting import figure
p = figure()
p.circle(x=[1,2,3], y=[4,6,5], size=20)
p.xaxis.ticker = [1, 2, 3]
p.xaxis.major_label_overrides = {1: 'A', 2: 'B', 3: 'C'}
output_file("test.html")
show(p)

NOTE: the old version of the answer below refers to the bokeh.charts API, which was since deprecated and removed
As of recent Bokeh releases (e.g. 0.12.4 or newer), this is now much simpler to accomplish using FuncTickFormatter:
import pandas as pd
from bokeh.charts import Bar, output_file, show
from bokeh.models import FuncTickFormatter
skills_list = ['cheese making', 'squanching', 'leaving harsh criticisms']
pct_counts = [25, 40, 1]
df = pd.DataFrame({'skill':skills_list, 'pct jobs with skill':pct_counts})
p = Bar(df, 'index', values='pct jobs with skill', title="Top skills for ___ jobs", legend=False)
label_dict = {}
for i, s in enumerate(skills_list):
label_dict[i] = s
p.xaxis.formatter = FuncTickFormatter(code="""
var labels = %s;
return labels[tick];
""" % label_dict)
output_file("bar.html")
show(p)
EDIT: Updated for Bokeh 0.12.5 but also see simpler method in the other answer.
This worked for me:
import pandas as pd
from bokeh.charts import Bar, output_file, show
from bokeh.models import TickFormatter
from bokeh.core.properties import Dict, Int, String
class FixedTickFormatter(TickFormatter):
"""
Class used to allow custom axis tick labels on a bokeh chart
Extends bokeh.model.formatters.TickFormatte
"""
JS_CODE = """
import {Model} from "model"
import * as p from "core/properties"
export class FixedTickFormatter extends Model
type: 'FixedTickFormatter'
doFormat: (ticks) ->
labels = @get("labels")
return (labels[tick] ? "" for tick in ticks)
@define {
labels: [ p.Any ]
}
"""
labels = Dict(Int, String, help="""
A mapping of integer ticks values to their labels.
""")
__implementation__ = JS_CODE
skills_list = ['cheese making', 'squanching', 'leaving harsh criticisms']
pct_counts = [25, 40, 1]
df = pd.DataFrame({'skill':skills_list, 'pct jobs with skill':pct_counts})
p = Bar(df, 'index', values='pct jobs with skill', title="Top skills for ___ jobs", legend=False)
label_dict = {}
for i, s in enumerate(skills_list):
label_dict[i] = s
p.xaxis[0].formatter = FixedTickFormatter(labels=label_dict)
output_file("bar.html")
show(p)

If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With