With getIndex xs y I want the index of the first sublist in xs whose length is greater than y.
The output is:
[[],[4],[4,3],[3,5,3],[3,5,5,6,1]]
aufgabe6: <<loop>>
why getIndex does not work?
import Data.List
-- Die Sortierfunktion --
myCompare a b
| length a < length b = LT
| otherwise = GT
sortList :: [[a]] -> [[a]]
sortList x = sortBy myCompare x
-- Die Indexfunktion --
getIndex :: [[a]] -> Int -> Int
getIndex [] y = 0
getIndex (x:xs) y
| length x <= y = 1 + getIndex xs y
| otherwise = 0
where (x:xs) = sortList (x:xs)
main = do
print (sortList [[4],[3,5,3],[4,3],[3,5,5,6,1],[]])
print (getIndex [[4],[3,5,3],[4,3],[3,5,5,6,1],[]] 2)
The problem is in this case
getIndex (x:xs) y
| length x <= y = 1 + getIndex xs y
| otherwise = 0
where (x:xs) = sortList (x:xs)
You're confusing which (x:xs) is which. You should instead do
getIndex zs y
| length x <= y = 1 + getIndex xs y
| otherwise = 0
where (x:xs) = sortList zs
giving
Main> main
[[],[4],[4,3],[3,5,3],[3,5,5,6,1]]
3
*Main> getIndex [[],[2],[4,5]] 1
2
*Main> getIndex [[],[2],[4,5]] 5
3
This gives you the number of the first list of length at least y in the sorted list, which actually answers the question "How many lists are of length at most y in the original?"
If you want position from the original list, you can tag the entries with their position, using zip:
*Main> zip [1..] [[4],[3,5,3],[4,3],[3,5,5,6,1],[]]
[(1,[4]),(2,[3,5,3]),(3,[4,3]),(4,[3,5,5,6,1]),(5,[])]
Let's make a utility function for working with those:
hasLength likeThis (_,xs) = likeThis (length xs)
We can use it like this:
*Main> hasLength (==4) (1,[1,2,3,4])
True
*Main> filter (hasLength (>=2)) (zip [1..] ["","yo","hi there","?"])
[(2,"yo"),(3,"hi there")]
Which means it's now easy to write a function that gives you the index of the first list of length longer than y:
whichIsLongerThan xss y =
case filter (hasLength (>y)) (zip [1..] xss) of
[] -> error "nothing long enough" -- change this to 0 or (length xss + 1) if you prefer
(x:xs) -> fst x
This gives us
*Main> whichIsLongerThan [[4],[3,5,3],[4,3],[3,5,5,6,1],[]] 2
2
*Main> whichIsLongerThan [[4],[3,5,3],[4,3],[3,5,5,6,1],[]] 3
4
*Main> whichIsLongerThan [[4],[3,5,3],[4,3],[3,5,5,6,1],[]] 0
1
but we can do similar tricks:
whichIsShorterThan xss y =
case filter (hasLength (<y)) (zip [1..] xss) of
[] -> error "nothing short enough" -- change this to 0 or (length xss + 1) if you prefer
(x:xs) -> fst x
so you get
*Main> whichIsShorterThan [[4],[3,5,3],[4,3],[3,5,5,6,1],[]] 2
1
*Main> whichIsShorterThan [[4],[3,5,3],[4,3],[3,5,5,6,1],[]] 1
5
*Main> whichIsShorterThan [[4],[3,5,3],[4,3],[3,5,5,6,1],[]] 0
*** Exception: nothing short enough
Let's pull out the common theme there:
whichLength :: (Int -> Bool) -> [[a]] -> Int
whichLength likeThis xss =
case filter (hasLength likeThis) (zip [1..] xss) of
[] -> error "nothing found" -- change this to 0 or (length xss + 1) if you prefer
(x:xs) -> fst x
so we can do
*Main> whichLength (==5) [[4],[3,5,3],[4,3],[3,5,5,6,1],[]]
4
*Main> whichLength (>2) [[4],[3,5,3],[4,3],[3,5,5,6,1],[]]
2
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With