Consider this data:
m = data.frame(pop=c(1,1,1,1,2,2,2,2,2,3,3,3,3,3,4,4),
id=c(0,1,1,1,1,1,0,2,1,1,1,2,1,2,2,2))
> m
pop id
1 1 0
2 1 1
3 1 1
4 1 1
5 2 1
6 2 1
7 2 0
8 2 2
9 2 1
10 3 1
11 3 1
12 3 2
13 3 1
14 3 2
15 4 2
16 4 2
I would like to get the frequency of each unique id in each unique pop? For example, the id 1 is present 3 times out of 4 when pop == 1, therefore the frequency of id 1 in pop 1 is 0.75.
I came up with this ugly solution:
out = matrix(0,ncol=3)
for (p in unique(m$pop))
{
for (i in unique(m$id))
{
m1 = m[m$pop == p,]
f = nrow(m1[m1$id == i,])/nrow(m1)
out = rbind(out, c(p, f, i))
}
}
out = out[-1,]
colnames(out) = c("pop", "freq", "id")
# SOLUTION
> out
pop freq id
[1,] 1 0.25 0
[2,] 1 0.75 1
[3,] 1 0.00 2
[4,] 2 0.20 0
[5,] 2 0.60 1
[6,] 2 0.20 2
[7,] 3 0.00 0
[8,] 3 0.60 1
[9,] 3 0.40 2
[10,] 4 0.00 0
[11,] 4 0.00 1
[12,] 4 1.00 2
I am sure there exists a more efficient solution using data.table or table but couldn't find it.
Here's what I might do:
as.data.frame(prop.table(table(m),1))
# pop id Freq
# 1 1 0 0.25
# 2 2 0 0.20
# 3 3 0 0.00
# 4 4 0 0.00
# 5 1 1 0.75
# 6 2 1 0.60
# 7 3 1 0.60
# 8 4 1 0.00
# 9 1 2 0.00
# 10 2 2 0.20
# 11 3 2 0.40
# 12 4 2 1.00
If you want it sorted by pop, you can do that afterwards. Alternately, you could transpose the table with t before converting to data.frame; or use rev(m) and prop.table on dimension 2.
Try:
library(dplyr)
m %>%
group_by(pop, id) %>%
summarise(s = n()) %>%
mutate(freq = s / sum(s)) %>%
select(-s)
Which gives:
#Source: local data frame [8 x 3]
#Groups: pop
#
# pop id freq
#1 1 0 0.25
#2 1 1 0.75
#3 2 0 0.20
#4 2 1 0.60
#5 2 2 0.20
#6 3 1 0.60
#7 3 2 0.40
#8 4 2 1.00
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With