I'd like to fit some data with an exponential function. I used scipy.optimize.curve_fit because I already used it for other fits. This time, there is an issue and I can't figure out what's wrong.
Here is what the data looks like when plotted : data.png
as you see it seems to follow an exponential law.
import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import curve_fit
data = np.array([
0., 1.93468444, 3.69735865, 5.38185988, 6.02549022,
6.69199075, 7.72316694, 8.08913061, 8.84570241, 8.69711608,
8.80038144, 9.78951087, 9.68486674, 10.06175145, 10.44039495,
10.0481156 , 9.76656204, 9.88581457, 9.81805445, 10.42432252,
10.41102239, 11.2911395 , 9.64866184, 9.98072231, 10.83644694,
10.24748571, 10.81333209, 10.75949899, 10.90367328, 10.42446764,
10.51441017, 10.73047737, 10.8159758 , 10.51013538, 10.02862504,
9.76352112, 10.64829309, 10.6293347 , 10.67752596, 10.34801542,
10.53158576, 10.92883362, 10.67002314, 10.37015825, 10.74876349,
10.12821343, 10.8974205 , 10.1591103 , 10.588377 , 11.92134556,
10.309095 , 11.1174362 , 10.72654524, 10.60890374, 10.37456491,
10.05935346, 11.21295863, 11.09013951, 10.60862773, 11.2558922 ,
11.24660234, 10.35981557, 10.81284365, 10.96113067, 10.22716439,
9.8394873 , 10.01892084, 10.38237311, 10.04920671, 10.87782442,
10.42438756, 10.05614503, 10.5446946 , 9.99974368, 10.76930547,
10.22164072, 10.36942999, 10.89888302, 10.47035428, 10.58157374,
11.12615892, 11.30866718, 10.33215937, 10.46723351, 10.54072701,
11.45027197, 10.45895588, 10.34176601, 10.78405493, 10.43964778,
10.34047484, 10.25099046, 11.05847515, 10.27408195, 10.27529163,
10.16568845, 10.86451738, 10.73205291, 10.73300649, 10.49463959,
10.03729782
])
t = np.linspace(0, 100, len(data)) #time array
def expo(x, a, b, c): #exponential function for fitting
return a * np.exp(b * x) + c
fig1, ax1 = plt.subplots()
ax1.plot(t, data, ".", label="data")
coefs = curve_fit(expo, t, data)[0] # fitting
ax1.plot(t, expo(t, coefs[0], coefs[1], coefs[2]), "-", label="fit")
ax1.legend()
plt.show()
The problem is that curve_fit() returns very big or very small coefficients a,b and c while it should return something more like a = -10.5, b = -0.2, c = 10.5
The fitting process works by finding a local minimum of a loss function. If the problem is unconstrained, there may be several such local minima, each giving different values of parameters, and you may get a different one than the one that you are expecting.
If you have a guess what the parameters should be, you can provide it to narrow the search:
# with an initial guess for values of a, b, c
coefs = curve_fit(expo, t, data, p0=[-10, -1, 10])[0]
The coefficients it produces are:
array([-10.48815244, -0.2091102 , 10.56699883])
Alternatively, you can specify bonds for the parameters:
# with lower and upper bounds for a, b, c
coefs = curve_fit(expo, t, data, bounds=([-20, -2, 0], [-10, 2, 20]))[0]
This gives the same results as above.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With