I have a DataFrame like this:
| idx | Var1 | Var2 | Var3 |
|---|---|---|---|
| 0 | True | False | False |
| 1 | False | True | False |
| 2 | True | False | True |
| 3 | False | False | False |
| 4 | True | False | True |
I'd like to create three new columns with the distance (from each row) of the closest True, and if that row has a True show 0, so I would get this:
| idx | Var1 | Var2 | Var3 | distV1 | distV2 | distV3 |
|---|---|---|---|---|---|---|
| 0 | True | False | False | 0 | 1 | 2 |
| 1 | False | True | False | 1 | 0 | 1 |
| 2 | True | False | True | 0 | 1 | 0 |
| 3 | False | False | False | 1 | 2 | 1 |
| 4 | True | False | True | 0 | 3 | 0 |
I have read all other discussions related to this topic but haven't been able to find an answer for something like this.
Here is one approach with numpy ops:
for c in df:
r = np.where(df[c])[0]
d = abs(df.index.values[:, None] - r)
df[f'{c}_dist'] = abs(df.index - r[d.argmin(1)])
print(df)
Var1 Var2 Var3 Var1_dist Var2_dist Var3_dist
0 True False False 0 1 2
1 False True False 1 0 1
2 True False True 0 1 0
3 False False False 1 2 1
4 True False True 0 3 0
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With