I'm learning Python and I have a problem with this seems to be simple task.
I want to find all possible combination of numbers that sum up to a given number.
for example: 4 -> [1,1,1,1] [1,1,2] [2,2] [1,3]
I pick the solution which generate all possible subsets (2^n) and then yield just those that sum is equal to the number. I have a problem with the condition. Code:
def allSum(number):
#mask = [0] * number
for i in xrange(2**number):
subSet = []
for j in xrange(number):
#if :
subSet.append(j)
if sum(subSet) == number:
yield subSet
for i in allSum(4):
print i
BTW is it a good approach?
Here's some code I saw a few years ago that does the trick:
>>> def partitions(n):
if n:
for subpart in partitions(n-1):
yield [1] + subpart
if subpart and (len(subpart) < 2 or subpart[1] > subpart[0]):
yield [subpart[0] + 1] + subpart[1:]
else:
yield []
>>> print list(partitions(4))
[[1, 1, 1, 1], [1, 1, 2], [2, 2], [1, 3], [4]]
Additional References:
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With