let's say i have three list
listA = ['a','b','c', 'd']
listP = ['p', 'q', 'r']
listX = ['x', 'z']
so the dataframe will have 4*3*2 = 24 rows. now, the simplest way to solve this problem is to do this:
df = pd.DataFrame(columns=['A','P','X'])
for val1 in listA:
for val2 in listP:
for val3 in listX:
df.loc[<indexvalue>] = [val1,val2,val3]
now in the real scenario I will have about 800k rows and 12 columns (so 12 nesting in the loops). is there any way i can create this dataframe much faster?
Similar discussion here. Apparently np.meshgrid is more efficient for large data (as an alternative to itertools.product.
Application:
v = np.stack(i.ravel() for i in np.meshgrid(listA, listP, listX)).T
df = pd.DataFrame(v, columns=['A', 'P', 'X'])
>> A P X
0 a p x
1 a p z
2 b p x
3 b p z
4 c p x
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With