I am using R with Hadoop streaming where at the reducer, the value is a character array where each element is a string contains a few columns terminated by certain character, char(2) 002 in this case.
Is there an easy way to split the string into three fields and build a data frame from it?
Here is what I have done but I just have the feeling that I over engineered it again.
inputarray <- c("20130806\00211\00291.55", "20130807\00211\00291.55", "20130808\00211\00291.55",
"20130809\00211\00291.55", "201308010\00211\00291.55", "201308011\00211\00291.55",
"201308012\00211\00291.55", "201308013\00211\00291.55", "201308014\00211\00291.55"
)
tmp <- lapply(inputarray, FUN=function(x) strsplit(x, rawToChar(as.raw(2))) )
tmp <- data.frame(matrix(unlist(tmp), ncol=3, byrow=TRUE))
names(tmp) <- c("date", "qtyavail", "price")
tmp
Thanks!
You could use read.table. First I add an element for the names at the beginning of inputarray
x <- c("date\002qtyavail\002price", inputarray)
read.table(text = x, sep = rawToChar(as.raw(2)), header = TRUE)
# date qtyavail price
# 1 20130806 11 91.55
# 2 20130807 11 91.55
# 3 20130808 11 91.55
# 4 20130809 11 91.55
# 5 201308010 11 91.55
# 6 201308011 11 91.55
# 7 201308012 11 91.55
# 8 201308013 11 91.55
# 9 201308014 11 91.55
Alternatively, you could also use cSplit from the splitstackshape package
library(splitstackshape)
dt <- cSplit(data.table(x = inputarray), "x", rawToChar(as.raw(2)))
setnames(dt, names(dt), c("date", "qtyavail", "price"))
dt
# date qtyavail price
# 1: 20130806 11 91.55
# 2: 20130807 11 91.55
# 3: 20130808 11 91.55
# 4: 20130809 11 91.55
# 5: 201308010 11 91.55
# 6: 201308011 11 91.55
# 7: 201308012 11 91.55
# 8: 201308013 11 91.55
# 9: 201308014 11 91.55
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With