Basically I need to make the function drawArc to create a PDF file.
drawArc(int x, int y, int width, int height, int startAngle, int arcAngle)
I searched in PDF specification but does not talk about a command to draw an Arc (like in PostScript)... So I suppose I need to somehow simulate the Arc with curves, but it seems too dificult.
Any help will be appreciate, thanks!
EDIT. I found an answer that resolves the problem for drawEllipse here, but I need to implement the method drawArc (instead of drawEllipse).
So, finally I code a solution divided in two functions:
pdfDrawArc
private void pdfDrawArc(int x, int y, int width, int height, int startAngle, int arcAngle) {
System.out.println("Arc");
width -= 1;
height -= 1;
int n = (int)(Math.ceil(Math.abs(arcAngle / maxAnglePerCurve())));
int i;
double currentStartAngle = startAngle;
double actualArcAngle = ((double)arcAngle) / n;
for (i = 0; i < n; i++) {
double[] bezier = bezierCurve(this.x + x, this.y + y, width, height, currentStartAngle, actualArcAngle);
if (i == 0)
this.pdfMoveTo(bezier[0], bezier[1]);
this.pdfCurveTo(bezier [2], bezier [3], bezier [4], bezier [5], bezier [6], bezier [7]);
this.pdfStroke();
currentStartAngle += actualArcAngle;
}
}
BeizerCurve Based on L. Maisonobe solution.
private double[] bezierCurve(double x, double y, double width, double height, double startAngle, double arcAngle) {
double pi = 3.141592;
double a = width / 2;
double b = height / 2;
//center
double cx = x + a;
double cy = y + b;
//calculate trigonometric operations so we don't need to repeat the calculus
double cos1 = Math.cos(startAngle * pi / 180);
double sin1 = Math.sin(startAngle * pi / 180);
double cos2 = Math.cos((startAngle + arcAngle) * pi / 180);
double sin2 = Math.sin((startAngle + arcAngle) * pi / 180);
//point p1. Start point
double p1x = cx + a * cos1;
double p1y = cy - b * sin1;
//point d1. First derivative at start point.
double d1x = -a * sin1;
double d1y = -b * cos1;
//point p2. End point
double p2x = cx + a * cos2;
double p2y = cy - b * sin2;
//point d2. First derivative at end point
double d2x = -a * sin2;
double d2y = -b * cos2;
//alpha constant
double aux = Math.tan((arcAngle / 2) * pi / 180);
double alpha = Math.sin(arcAngle * pi / 180) * (Math.sqrt(4 + 3 * aux * aux) - 1.0) / 3.0;
//point q1. First control point
double q1x = p1x + alpha * d1x;
double q1y = p1y + alpha * d1y;
//point q2. Second control point.
double q2x = p2x - alpha * d2x;
double q2y = p2y - alpha * d2y;
return new double[] { p1x, p1y, q1x, q1y, q2x, q2y, p2x, p2y };
}
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With