Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Detecting squares/rectangles using OpenCV [duplicate]

Tags:

python

opencv

So I'm trying to find every square on a image, but I'm getting too many detections. I only want to detect the big cubes, and not all the noise around. My problem is also that the cubes can be different colours, but they will always be the same size.

I've written some code, but it doesn't work.

import numpy as np 
import cv2 
 
img = cv2.imread('gulRec.jpg') 
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) 

 
imagem = (255-gray)
ret,thresh = cv2.threshold(imagem,120,200,1) 
 
contours,h = cv2.findContours(thresh,1,2)

for cnt in contours: 
    approx = cv2.approxPolyDP(cnt,0.01*cv2.arcLength(cnt,True),True) 
    print (len(approx))
    if len(approx)==4: 
        cv2.drawContours(img,[cnt],0,(0,0,255),-1) 
        
cv2.imshow('thresh',thresh)  
cv2.imshow('img',img) 
cv2.waitKey(0) 
cv2.destroyAllWindows() 

picture 1 åicture 2

like image 514
Mads Avatar asked Dec 20 '25 12:12

Mads


1 Answers

Here is one way to detect the red and yellow cubes in Python/OpenCV. The basic idea for red and yellow cubes is to recognize that the hue for red and yellow are the lowest of all colors. So one can convert to HSV and use cv2.inRange() to threshold on red and yellow.

Input:

enter image description here

import cv2
import numpy as np

img = cv2.imread("4cubes.jpg")

# convert to HSV, since red and yellow are the lowest hue colors and come before green
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)

# create a binary thresholded image on hue between red and yellow
lower = (0,240,160)
upper = (30,255,255)
thresh = cv2.inRange(hsv, lower, upper)

# apply morphology
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (9,9))
clean = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, kernel)
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (15,15))
clean = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, kernel)

# get external contours
contours = cv2.findContours(clean, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
contours = contours[0] if len(contours) == 2 else contours[1]

result1 = img.copy()
result2 = img.copy()
for c in contours:
    cv2.drawContours(result1,[c],0,(0,0,0),2)
    # get rotated rectangle from contour
    rot_rect = cv2.minAreaRect(c)
    box = cv2.boxPoints(rot_rect)
    box = np.int0(box)
    # draw rotated rectangle on copy of img
    cv2.drawContours(result2,[box],0,(0,0,0),2)

# save result
cv2.imwrite("4cubes_thresh.jpg",thresh)
cv2.imwrite("4cubes_clean.jpg",clean)
cv2.imwrite("4cubes_result1.png",result1)
cv2.imwrite("4cubes_result2.png",result2)

# display result
cv2.imshow("thresh", thresh)
cv2.imshow("clean", clean)
cv2.imshow("result1", result1)
cv2.imshow("result2", result2)
cv2.waitKey(0)
cv2.destroyAllWindows()

Threshold image:

enter image description here

Morphology cleaned image:

enter image description here

Contours:

enter image description here

Rotated bounding boxes:

enter image description here

like image 142
fmw42 Avatar answered Dec 22 '25 00:12

fmw42



Donate For Us

If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!