My problem concerns an API design.
Let's say I'm designing a vector (math/physics meaning). I would like to have both an immutable implemenation and a mutable one.
I have then my vector that looks like this:
public interface Vector {
public float getX(); public float getY();
public X add(Vector v);
public X subtract(Vector v);
public X multiply(Vector v);
public float length();
}
I wonder how I can ensure to have both a mutable and an immutable implementation. I don't really like java.util.List's approach (allowing mutability by default) and the UnsupportedOperationException() that Guava's immutable implementation has.
How can I design a "perfect" interface or abstract class Vector with both these implementations?
I've thought about something like this:
public interface Vector {
...
public Vector add(Vector v);
...
}
public final class ImmutableVector implements Vector {
...
public ImmutableVector add(Vector v) {
return new ImmutableVector(this.x+v.getX(), this.y+v.getY());
}
...
}
public class MutableVector implements Vector {
...
public MutableVector add(Vector v) {
this.x += v.getX();
this.y += v.getY();
return this;
}
...
}
So all in all, I would like to check if this approach has flagrant design flaws, which are they and what should I do tho fix these?
Notes: the "vector" stuff is an example of a more general use case. For the sake of my question I could have chosen to rewrite the List interface or anything else. Please focus on the more general use case.
Final choice, after answers below, based on Joda-time as someone explained but now edited:
/** Basic class, allowing read-only access. */
public abstract class ReadableVector {
public abstract float getX(); public abstract float getY();
public final float length() {
return Vectors.length(this);
}
// equals(Object), toString(), hashCode(), toImmutableVectors(), mutableCopy()
}
/** ImmutableVector, not modifiable implementation */
public final class ImmutableVector extends ReadableVector implements Serializable {
// getters
// guava-like builder methods (copyOf, of, etc.)
}
/** Mutable implementation */
public class Vector extends ReadableVector implements Serializable {
// fields, getters and setters
public void add (ReadableVector v) {/* delegate to Vectors */}
public void subtract(ReadableVector v) {/* delegate to Vectors */}
public void multiply(ReadableVector v) {/* delegate to Vectors */}
}
/** Tool class containing all the logic */
public final class Vectors {
public static ImmutableVector add(ReadableVector v1, ReadableVector v2) {...}
public static void addTo(Vector v1, ReadableVector v2) {...}
...
}
I changed Vector from an interface to a abstract class because basically a vector shouldn't be anything else.
Thank you to everyone.
As a user of your Vector library, I would not like to have one add implementation which modifies the current Object and another add implementation (of the same interface) which returns a new one.
Better have a clear set of methods which do not modify the current object, and then have additional methods in the mutable vector which do modify the current object.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With