I have following Dataframe:
fk name
0 105 Coca-Cola1
1 105 Coca-Cola1
2 106 Coca-Cola2
3 115 Coca-Cola5
4 115 Coca-Cola5
5 115 Coca-Cola5
6 108 Coca-Cola8
7 105 Coca-Cola1
I want to count frequency of occurrences:
[[105, Coca-Cola1, 3],
[106, Coca-Cola2, 1],
[115, Coca-Cola5, 3],
[108, Coca-Cola8, 1]]
Any idea how to get so ?
You can use groupby with aggregating size, then reset_index and last convert to numpy array by DataFrame.values with numpy.ndarray.tolist:
df = df.groupby(['fk','name']).size().reset_index().values.tolist()
print (df)
[[105, 'Coca-Cola1', 3],
[106, 'Coca-Cola2', 1],
[108, 'Coca-Cola8', 1],
[115, 'Coca-Cola5', 3]]
If is order important add parameter sort=False to groupby:
df = df.groupby(['fk','name'], sort=False).size().reset_index().values.tolist()
print (df)
[[105, 'Coca-Cola1', 3],
[106, 'Coca-Cola2', 1],
[115, 'Coca-Cola5', 3],
[108, 'Coca-Cola8', 1]]
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With