Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

convert similarly named unequally length list elements to data frame R

Tags:

list

r

dplyr

I know theres so many list to dataframe questions but I cant find the solution to this easy problem. Lets say I have:

library(tidyverse)
library(janitor)
df <- data.frame( group = c(rep("A",3), rep("B", 6)),
                  test_value = c(0,1,2, 0,1,2,3,4,5))
df_list <- df %>% 
  split(.$group) %>% 
  map(~tabyl(.x$test_value))
df_list  
# $A
#  .x$test_value n   percent
#              0 1 0.3333333
#              1 1 0.3333333
#              2 1 0.3333333

# $B
#  .x$test_value n   percent
#              0 1 0.1666667
#              1 1 0.1666667
#              2 1 0.1666667
#              3 1 0.1666667
#              4 1 0.1666667
#              5 1 0.1666667

All I want to do is convert it to this named dataframe of the following:

  A_test_value   A_n A_percent B_test_value   B_n B_percent
         <dbl> <dbl>     <dbl>        <dbl> <dbl>     <dbl>
1            0     1     0.333            0     1     0.167
2            1     1     0.333            1     1     0.167
3            2     1     0.333            2     1     0.167
4           NA    NA    NA                3     1     0.167
5           NA    NA    NA                4     1     0.167
6           NA    NA    NA                5     1     0.167

I've seen this but it is slightly different (Converting nested list (unequal length) to data frame)

Would anyone have a quick solution (maybe dplyr type) please?

like image 781
user63230 Avatar asked Nov 25 '25 03:11

user63230


1 Answers

Perhaps you want to join?

library(dplyr)
library(purrr)
library(janitor)

df %>% 
  group_split(group) %>% 
  map(~tabyl(.x, test_value)) %>%
  reduce(full_join, by = "test_value")

  test_value n.x percent.x n.y percent.y
1          0   1 0.3333333   1 0.1666667
2          1   1 0.3333333   1 0.1666667
3          2   1 0.3333333   1 0.1666667
4          3  NA        NA   1 0.1666667
5          4  NA        NA   1 0.1666667
6          5  NA        NA   1 0.1666667

For named output indicating group you could do:

df %>% 
  split(.$group) %>%
  map(~tabyl(.x, test_value)) %>%
  imap(~set_names(.x, ifelse(names(.x) != "test_value", paste(.y, names(.x), sep = "_"), names(.x)))) %>%
  reduce(full_join, by = "test_value")

  test_value A_n A_percent B_n B_percent
1          0   1 0.3333333   1 0.1666667
2          1   1 0.3333333   1 0.1666667
3          2   1 0.3333333   1 0.1666667
4          3  NA        NA   1 0.1666667
5          4  NA        NA   1 0.1666667
6          5  NA        NA   1 0.1666667
like image 133
Ritchie Sacramento Avatar answered Nov 27 '25 18:11

Ritchie Sacramento



Donate For Us

If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!