The problem: I have two dataframes that I would like to merge depending on the date/time of one dataframe being in the interval of the other dataframe.
traffic: Date and Time (Posixct), Frequency
mydata: Interval, Sum of Frequency
I would now like to calculate if the Posixct time from traffic is within the interval of mydata and if this is TRUE I would like to count the frequency in the column "Sum of Frequencies" in mydata.
The two problems, that I encountered: 1. traffic data frame has significantly more rows than mydata. I dont know how to tell R to loop through every observation in traffic to check for one row in mydata.
Here is the data:
DateTime <- c("2014-11-01 04:00:00", "2014-11-01 04:03:00", "2014-11-01 04:06:00", "2014-11-01 04:08:00", "2014-11-01 04:10:00", "2014-11-01 04:12:00", "2015-08-01 04:13:00", "2015-08-01 04:45:00", "2015-08-01 14:15:00", "2015-08-01 14:13:00")
DateTime <- as.POSIXct(DateTime)
Frequency <- c(1,2,3,5,12,1,2,2,1,1)
traffic <- data.frame(DateTime, Frequency)
library(lubridate)
DateTime1 <- c("2014-11-01 04:00:00", "2015-08-01 04:03:00", "2015-08-01 14:00:00")
DateTime2 <- c("2014-11-01 04:15:00", "2015-08-01 04:13:00", "2015-08-01 14:15:00")
DateTime1 <- as.POSIXct(DateTime1)
DateTime2 <- as.POSIXct(DateTime2)
mydata <- data.frame(DateTime1, DateTime2)
mydata$Interval <- as.interval(DateTime1, DateTime2)
mydata$SumFrequency <- NA
The expected outcome should be something like this:
mydata$SumFrequency <- c(24, 2, 2)
head(mydata)
I tried int_overlaps from package lubridate. Any tips on how to solve this are higly appreciated!
A short solution with foverlaps from the data.table package:
mydata <- data.table(DateTime1, DateTime2, key = c("DateTime1", "DateTime2"))
traffic <- data.table(start = DateTime, end = DateTime, Frequency, key = c("start","end"))
foverlaps(traffic, mydata, type="within", nomatch=0L)[, .(sumFreq = sum(Frequency)),
by = .(DateTime1, DateTime2)]
which gives:
DateTime1 DateTime2 sumFreq
1: 2014-11-01 04:00:00 2014-11-01 04:15:00 24
2: 2015-08-01 04:03:00 2015-08-01 04:13:00 2
3: 2015-08-01 14:00:00 2015-08-01 14:15:00 2
On a data.table approach with between to filter traffic dataset on time:
setDT(traffic)
setDT(mydata)
mydata[,SumFrequency := as.numeric(SumFrequency)] # coerce logical to numeric for next step.
mydata[,SumFrequency := sum( traffic[ DateTime %between% c(DateTime1, DateTime2), Frequency] ), by=1:nrow(mydata)]
which give:
DateTime1 DateTime2 Interval SumFrequency
1: 2014-11-01 04:00:00 2014-11-01 04:15:00 2014-11-01 04:00:00 CET--2014-11-01 04:15:00 CET 24
2: 2015-08-01 04:03:00 2015-08-01 04:13:00 2015-08-01 04:03:00 CEST--2015-08-01 04:13:00 CEST 2
3: 2015-08-01 14:00:00 2015-08-01 14:15:00 2015-08-01 14:00:00 CEST--2015-08-01 14:15:00 CEST 2
If there's a lot of row in mydata, it could be better to create an index column and use it in by clause:
mydata[, idx := .I]
mydata[, SumFrequency := sum( traffic[DateTime %between% c(DateTime1, DateTime2),Frequency] ),by=idx]
And this gives:
DateTime1 DateTime2 Interval SumFrequency idx
1: 2014-11-01 04:00:00 2014-11-01 04:15:00 2014-11-01 04:00:00 CET--2014-11-01 04:15:00 CET 24 1
2: 2015-08-01 04:03:00 2015-08-01 04:13:00 2015-08-01 04:03:00 CEST--2015-08-01 04:13:00 CEST 2 2
3: 2015-08-01 14:00:00 2015-08-01 14:15:00 2015-08-01 14:00:00 CEST--2015-08-01 14:15:00 CEST 2 3
I see two solutions :
data.frame and plyr
You could do it using %within% function in lubridate and with a for-loop or using plyr loop functions like dlply
DateTime <- c("2014-11-01 04:00:00", "2014-11-01 04:03:00", "2014-11-01 04:06:00", "2014-11-01 04:08:00", "2014-11-01 04:10:00", "2014-11-01 04:12:00", "2015-08-01 04:13:00", "2015-08-01 04:45:00", "2015-08-01 14:15:00", "2015-08-01 14:13:00")
DateTime <- as.POSIXct(DateTime)
Frequency <- c(1,2,3,5,12,1,2,2,1,1)
traffic <- data.frame(DateTime, Frequency)
library(lubridate)
DateTime1 <- c("2014-11-01 04:00:00", "2015-08-01 04:03:00", "2015-08-01 14:00:00")
DateTime2 <- c("2014-11-01 04:15:00", "2015-08-01 04:13:00", "2015-08-01 14:15:00")
DateTime1 <- as.POSIXct(DateTime1)
DateTime2 <- as.POSIXct(DateTime2)
mydata <- data.frame(DateTime1, DateTime2)
mydata$Interval <- as.interval(DateTime1, DateTime2)
library(plyr)
# Create a group-by variable
mydata$NumInt <- 1:nrow(mydata)
mydata$SumFrequency <- dlply(mydata, .(NumInt),
function(row){
sum(
traffic[traffic$DateTime %within% row$Interval, "Frequency"]
)
})
mydata
#> DateTime1 DateTime2
#> 1 2014-11-01 04:00:00 2014-11-01 04:15:00
#> 2 2015-08-01 04:03:00 2015-08-01 04:13:00
#> 3 2015-08-01 14:00:00 2015-08-01 14:15:00
#> Interval NumInt SumFrequency
#> 1 2014-11-01 04:00:00 CET--2014-11-01 04:15:00 CET 1 24
#> 2 2015-08-01 04:03:00 CEST--2015-08-01 04:13:00 CEST 2 2
#> 3 2015-08-01 14:00:00 CEST--2015-08-01 14:15:00 CEST 3 2
data.table and functions foverlaps
data.table has implemented a function for overlapping joins that you could use in your case with a little trick.
This functions is foverlaps (I uses below data.table 1.9.6)
(see How to perform join over date ranges using data.table? and this presentation)
Notice that you do not need to create interval with lubridate
DateTime <- c("2014-11-01 04:00:00", "2014-11-01 04:03:00", "2014-11-01 04:06:00", "2014-11-01 04:08:00", "2014-11-01 04:10:00", "2014-11-01 04:12:00", "2015-08-01 04:13:00", "2015-08-01 04:45:00", "2015-08-01 14:15:00", "2015-08-01 14:13:00")
DateTime <- as.POSIXct(DateTime)
Frequency <- c(1,2,3,5,12,1,2,2,1,1)
traffic <- data.table(DateTime, Frequency)
library(lubridate)
DateTime1 <- c("2014-11-01 04:00:00", "2015-08-01 04:03:00", "2015-08-01 14:00:00")
DateTime2 <- c("2014-11-01 04:15:00", "2015-08-01 04:13:00", "2015-08-01 14:15:00")
mydata <- data.table(DateTime1 = as.POSIXct(DateTime1), DateTime2 = as.POSIXct(DateTime2))
# Use function `foverlaps` for overlapping joins
# Here's the trick : create a dummy variable to artificially have an interval
traffic[, dummy:=DateTime]
setkey(mydata, DateTime1, DateTime2)
# do the join
mydata2 <- foverlaps(traffic, mydata, by.x=c("DateTime", "dummy"), type ="within", nomatch=0L)[, dummy := NULL][]
mydata2
#> DateTime1 DateTime2 DateTime Frequency
#> 1: 2014-11-01 04:00:00 2014-11-01 04:15:00 2014-11-01 04:00:00 1
#> 2: 2014-11-01 04:00:00 2014-11-01 04:15:00 2014-11-01 04:03:00 2
#> 3: 2014-11-01 04:00:00 2014-11-01 04:15:00 2014-11-01 04:06:00 3
#> 4: 2014-11-01 04:00:00 2014-11-01 04:15:00 2014-11-01 04:08:00 5
#> 5: 2014-11-01 04:00:00 2014-11-01 04:15:00 2014-11-01 04:10:00 12
#> 6: 2014-11-01 04:00:00 2014-11-01 04:15:00 2014-11-01 04:12:00 1
#> 7: 2015-08-01 04:03:00 2015-08-01 04:13:00 2015-08-01 04:13:00 2
#> 8: 2015-08-01 14:00:00 2015-08-01 14:15:00 2015-08-01 14:15:00 1
#> 9: 2015-08-01 14:00:00 2015-08-01 14:15:00 2015-08-01 14:13:00 1
# summarise with a sum by grouping by each line of mydata
setkeyv(mydata2, key(mydata))
mydata2[mydata, .(SumFrequency = sum(Frequency)), by = .EACHI]
#> DateTime1 DateTime2 SumFrequency
#> 1: 2014-11-01 04:00:00 2014-11-01 04:15:00 24
#> 2: 2015-08-01 04:03:00 2015-08-01 04:13:00 2
#> 3: 2015-08-01 14:00:00 2015-08-01 14:15:00 2
As far as point 2 is concerned you can use aggregate for instance
aggData <- aggregate(traffic$Frequency~format(traffic$DateTime, "%Y%m%d h:m"), data=traffic, sum)
This sums all frequencies in minute intervals.
And for point 1. Wouldn't a merge work?
merge(x = myData, y = aggData, by = "DateTime", all.x = TRUE)
The outer merge is explained here
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With