I am struggling with an implementation of the Cartesian product for
multiple indices with a given range 0,...,n-1
.
The basic idea is to have a function:
cartesian_product<std::size_t range, std::size_t sets>()
with an output array that contains tuples that hold the different products
[(0,..,0), (0,...,1), (0,...,n-1),...., (n-1, ..., n-1)]
An simple example would be the following:
auto result = cartesian_product<3, 2>();
with the output type std::array<std::tuple<int, int>, (3^2)>
:
[(0,0), (0,1), (0,2), (1,0), (1,1), (1,2), (2,0), (2,1), (2,2)]
My main problem is that my version of the Cartesian product is slow and creates a stack overflow if you choose to have more than 5 sets. I believe that my code has too many recursions and temporary variables.
My implementation (C++17) can be found here: cartesian_product
#include <stdio.h>
#include <iostream>
#include <tuple>
template<typename T, std::size_t ...is>
constexpr auto flatten_tuple_i(T tuple, std::index_sequence<is...>) {
return std::tuple_cat(std::get<is>(tuple)...);
}
template<typename T>
constexpr auto flatten_tuple(T tuple) {
return flatten_tuple_i(tuple, std::make_index_sequence<std::tuple_size<T>::value>{});
}
template<std::size_t depth, typename T>
constexpr auto recursive_flatten_tuple(T tuple){
if constexpr(depth <= 1){
return tuple;
}else{
return recursive_flatten_tuple<depth-1>(flatten_tuple(tuple));
}
}
template<std::size_t depth, typename T, std::size_t ...is>
constexpr auto wdh(T&& tuple, std::index_sequence<is...>){
if constexpr (depth == 0) {
return tuple;
}else{
//return (wdh<depth-1>(std::tuple_cat(tuple, std::make_tuple(is)),std::make_index_sequence<sizeof...(is)>{})...);
return std::make_tuple(wdh<depth-1>(std::tuple_cat(tuple, std::make_tuple(is)), std::make_index_sequence<sizeof...(is)>{})...);
}
}
template<std::size_t sets, typename T, std::size_t ...is>
constexpr auto to_array(T tuple, std::index_sequence<is...>){
if constexpr (sets == 0){
auto t = (std::make_tuple(std::get<is>(tuple)),...);
std::array<decltype(t), sizeof...(is)> arr = {std::make_tuple(std::get<is>(tuple))...};
//decltype(arr)::foo = 1;
return arr;
}else{
auto t = ((std::get<is>(tuple)),...);
std::array<decltype(t), sizeof...(is)> arr = {std::get<is>(tuple)...};
return arr;
}
}
template<std::size_t sets, std::size_t ...is>
constexpr auto ct_i(std::index_sequence<is...>){
if constexpr (sets == 0){
auto u = std::tuple_cat(wdh<sets>(std::make_tuple(is), std::make_index_sequence<sizeof...(is)>{})...);
auto arr = to_array<sets>(u, std::make_index_sequence<std::tuple_size<decltype(u)>::value>{});
return arr;
}else {
auto u = std::tuple_cat(wdh<sets>(std::make_tuple(is), std::make_index_sequence<sizeof...(is)>{})...);
auto r = recursive_flatten_tuple<sets>(u);
auto d = to_array<sets>(r, std::make_index_sequence<std::tuple_size<decltype(r)>::value>{});
return d;
}
}
template<std::size_t range, std::size_t sets>
constexpr auto cartesian_product(){
static_assert( (range > 0), "lowest input must be cartesian<1,1>" );
static_assert( (sets > 0), "lowest input must be cartesian<1,1>" );
return ct_i<sets-1>(std::make_index_sequence<range>{});
}
int main()
{
constexpr auto crt = cartesian_product<3, 2>();
for(auto&& ele : crt){
std::cout << std::get<0>(ele) << " " << std::get<1>(ele) << std::endl;
}
return 0;
}
With Boost.Mp11, this is... alright, it's not a one-liner, but it's still not so bad:
template <typename... Lists>
using list_product = mp_product<mp_list, Lists...>;
template <typename... Ts>
constexpr auto list_to_tuple(mp_list<Ts...>) {
return std::make_tuple(int(Ts::value)...);
}
template <typename... Ls>
constexpr auto list_to_array(mp_list<Ls...>) {
return std::array{list_to_tuple(Ls{})...};
}
template <size_t R, size_t N>
constexpr auto cartesian_product()
{
using L = mp_repeat_c<mp_list<mp_iota_c<R>>, N>;
return list_to_array(mp_apply<list_product, L>{});
}
With C++20, you can declare the two helper function templates as lambdas inside of cartesian_product
, which makes this read nicer (top to bottom instead of bottom to top).
Explanation of what's going on, based on the OP example of cartesian_product<3, 2>
:
mp_iota_c<R>
gives us the list [0, 1, 2]
(but as integral constant types)mp_repeat_c<mp_list<mp_iota_c<R>>, N>
gives us [[0, 1, 2], [0, 1, 2]]
. We just repeat the list, but we want a list of lists (hence the extra mp_list
in the middle). mp_apply<list_product, L>
does mp_product
, which is a cartesian product of all the lists you pass in... sticking the result in an mp_list
. This gives you [[0, 0], [0, 1], [0, 2], ..., [2, 2]]
, but as an mp_list
of mp_list
of integral constants.list_to_tuple
takes an mp_list
of integral constants and turns that into a tuple<int...>
with the right values. And list_to_array
takes an mp_list
of mp_list
s of integral constants and turns that into an std::array
of tuple
s.A slightly different approach using just the single helper function:
template <template <typename...> class L,
typename... Ts, typename F>
constexpr auto unpack(L<Ts...>, F f) {
return f(Ts{}...);
}
template <size_t R, size_t N>
constexpr auto cartesian_product()
{
using P = mp_apply_q<
mp_bind_front<mp_product_q, mp_quote<mp_list>>,
mp_repeat_c<mp_list<mp_iota_c<R>>, N>>;
return unpack(P{},
[](auto... lists){
return std::array{
unpack(lists, [](auto... values){
return std::make_tuple(int(values)...);
})...
};
});
}
This approach is harder to read though, but it's the same algorithm.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With