I want to add a new column to my data.table containing the cumulative product of Data1 based on the Date. The cumulative product should be calculated for each category (Cat) and should start with the latest available Date.
Sample data:
DF = data.frame(Cat=rep(c("A","B"),each=4), Date=rep(c("01-08-2013","01-07-2013","01-04-2013","01-03-2013"),2), Data1=c(1:8))
DF$Date = as.Date(DF$Date , "%m-%d-%Y")
DT = data.table(DF)
DT[ , Data1_cum:=NA_real_]
DT
Cat Date Data1 Data1_cum
1: A 2013-01-08 1 NA
2: A 2013-01-07 2 NA
3: A 2013-01-04 3 NA
4: A 2013-01-03 4 NA
5: B 2013-01-08 5 NA
6: B 2013-01-07 6 NA
7: B 2013-01-04 7 NA
8: B 2013-01-03 8 NA
The result should look like this:
Cat Date Data1 Data1_cum
1: A 2013-01-08 1 1
2: A 2013-01-07 2 2
3: A 2013-01-04 3 6
4: A 2013-01-03 4 24
5: B 2013-01-08 5 5
6: B 2013-01-07 6 30
7: B 2013-01-04 7 210
8: B 2013-01-03 8 1680
I figured out that I could do something similar using cumprod(), but I do not know how to handle the categories. NAs in Data1 should be ignored / treated as 1.
The real dataset has about 8 million rows and 1000 categories.
If the only looksissue is the ordering...
DT[order(Date, decreasing=TRUE), Data1_cum := cumprod(Data1), by=Cat]
DT
Cat Date Data1 Data1_cum
1: A 2013-01-08 1 1
2: A 2013-01-07 2 2
3: A 2013-01-04 3 6
4: A 2013-01-03 4 24
5: B 2013-01-08 5 5
6: B 2013-01-07 6 30
7: B 2013-01-04 7 210
8: B 2013-01-03 8 1680
Note: If you shuffle the order of the rows, your results can vary. Careful with how you implement the order(.) command
## Let's add some NA values
DT <- rbind(DT, DT)
DT[c(2, 6, 11, 15), Data1 := NA]
# shuffle the rows, to make sure this is right
set.seed(1)
DT <- DT[sample(nrow(DT))]
Assigning the cumulative product:
## If you want to leave the NA's as NA's in the cum prod, use:
DT[ , Data1_cum := NA_real_ ]
DT[ intersect(order(Date, decreasing=TRUE), which(!is.na(Data1)))
, Data1_cum := cumprod(Data1)
, by=Cat]
# View the data, orderly
DT[order(Date, decreasing=TRUE)][order(Cat)]
Cat Date Data1 Data1_cum
1: A 2013-01-08 1 1
2: A 2013-01-08 1 1
3: A 2013-01-07 2 2
4: A 2013-01-07 NA NA <~~~~~~~ Note that the NA rows have the value of the prev row
5: A 2013-01-04 3 6
6: A 2013-01-04 NA NA <~~~~~~~ Note that the NA rows have the value of the prev row
7: A 2013-01-03 4 24
8: A 2013-01-03 4 96
9: B 2013-01-08 5 5
10: B 2013-01-08 5 25
11: B 2013-01-07 6 150
12: B 2013-01-07 NA NA <~~~~~~~ Note that the NA rows have the value of the prev row
13: B 2013-01-04 7 1050
14: B 2013-01-04 NA NA <~~~~~~~ Note that the NA rows have the value of the prev row
15: B 2013-01-03 8 8400
16: B 2013-01-03 8 67200
## If instead you want to treat the NA's as 1, use:
DT[order(Date, decreasing=TRUE), Data1_cum := {Data1[is.na(Data1)] <- 1; cumprod(Data1 [order(Date, decreasing=TRUE)] )}, by=Cat]
# View the data, orderly
DT[order(Date, decreasing=TRUE)][order(Cat)]
Cat Date Data1 Data1_cum
1: A 2013-01-08 1 1
2: A 2013-01-08 1 1
3: A 2013-01-07 2 2
4: A 2013-01-07 NA 2 <~~~~~~~ Rows with NA took on values of the previous Row
5: A 2013-01-04 3 6
6: A 2013-01-04 NA 6 <~~~~~~~ Rows with NA took on values of the previous Row
7: A 2013-01-03 4 24
8: A 2013-01-03 4 96
9: B 2013-01-08 5 5
10: B 2013-01-08 5 25
11: B 2013-01-07 6 150
12: B 2013-01-07 NA 150 <~~~~~~~ Rows with NA took on values of the previous Row
13: B 2013-01-04 7 1050
14: B 2013-01-04 NA 1050 <~~~~~~~ Rows with NA took on values of the previous Row
15: B 2013-01-03 8 8400
16: B 2013-01-03 8 67200
Alternatively, If you already have the cumulative product and simply want to remove the NA's you can do so as follows:
# fix the NA's with the previous value
DT[order(Date, decreasing=TRUE),
Data1_cum := {tmp <- c(0, head(Data1_cum, -1));
Data1_cum[is.na(Data1_cum)] <- tmp[is.na(Data1_cum)];
Data1_cum }
, by=Cat ]
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With