Can somebody explain to me why this code works?!!
I know A holds &A[0] and it is not a real pointer as if you cout<<&A you would get &A[0], but this result looks very strange to me.
int main()
{
double A[] = {2.4, 1.2, 4.6, 3.04, 5.7};
int len = *(&A+1) - A; // Why is this 5?
cout << "The array has " << len << " elements." << endl;
return 0;
}
And why this code doesn't work? And how can you make it work?
void test(double B[])
{
int len = *(&B+1) - B;
cout << len << endl;
}
int main()
{
double A[] = {2.4, 1.2, 4.6, 3.04, 5.7};
test(A);
system("pause");
return 0;
}
The expression is parsed like this:
(*((&A) + 1)) - A
The probably vexing part is that for some (but not all!) parts of this expression, the array decays to a pointer to the first element. So, let's unwrap this:
First thing is taking the address of the array, which gives you a pointer to an array of five elements.
Then, the pointer is incremented (+ 1), which gives the address immediately following the array.
Third, the pointer is dereferenced, which yields a reference to an array of five elements.
Last, the array is subtracted. It is only here that the two operands actually decay to a pointer to their first elements. The two are the length of the array apart, which gives the number of elements as distance.
&A takes the address of A itself. The type of A is double[5].
When you take the address of A itself and increment that pointer by 1, you are incrementing it by sizeof(double[5]) bytes. So now you have a pointer to the address following the A array.
When you dereference that pointer, you have a reference to the next double[5] array following A, which is effectively also a double* pointer to the address of A[5].
You are then subtracting the address of A[0] (an array decays into a pointer to its first element), and standard pointer arithmetic gives you 5 elements:
&A[5] - &A[0] = 5
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With