I got this problem "Implement this method to return the sum of the two largest numbers in a given array."
I resolved it in this way:
public static int sumOfTwoLargestElements(int[] a) {
int firstLargest = largest(a, 0, a.length-1);
int firstLarge = a[firstLargest];
a[firstLargest] = -1;
int secondLargest = largest(a, 0, a.length-1);
return firstLarge + a[secondLargest];
}
private static int largest(int s[], int start , int end){
if (end - start == 0){
return end;
}
int a = largest(s, start, start + (end-start)/2) ;
int b = largest(s, start + (end-start)/2+1 , end);
if(s[a] > s[b]) {
return a;
}else {
return b;
}
}
Explanation: I implemented a method 'largeset'. This method is responsible to get the largest number in a given array.
I call the method tow times in the same array. The first call will get the first largest number.I put it aside into variable and i replace it by '-1' number into the array. Then, i call the largest medhod second time.
Some one can tell me what is the complexity of this algo? please
The time complexity of the algorithm is O(n).
Each recursive call's complexity is actually:
f(n) = 2*f(n/2) + CONST
It is easy to see (by induction1) that f(n) <= CONST'*n - and thus it is O(n).
The space complexity is O(logN) - because this is the maximal depth of the recursion - so you allocate O(logN) memory on the call stack.
(1)
If you use f(n) = 2*n*CONST - CONST you get:
f(n) = 2*f(n/2) + CONST = (h.i.) 2*(2*CONST*n/2 - CONST) + CONST =
= 2*n*CONST - 2CONST + CONST = 2*n*CONST - CONST
(Checking the base is is left as exercise for the reader)
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With